Empirical Software Engineering

CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module IIb: TBM in Risk Ident.

- Telecom Case Study
- TBM and Applications
- Results and Discussions
Overview

- Project background:
 - Reliability and QA:
 - SMU research under NSF&THECB grants 1998—: Tian, Nguyen, and others.
 - Industrial support: Nortel Networks Frame, Allen, Appan, and others.

- Planned activities:
 - Defect analysis: TBDMs (Tree-based defect models)
 - Reliability improvement: TBRMs (Tree-based reliability models)
 - Other: UMMs, testing, HT, etc.

- JSS paper by Tian/Nguyen/Allen/Appan.
Overview: Context

- Objectives of study:
 Understanding problem prone modules for quality management and improvement.

- Objects of study:
 - Large telecommunication software
 - Nortel Networks products: NT-X
 - Developed/released/used recently
 - 5 different releases
 - Latest finished around 2000/2001

- Development environment:
 - Waterfall-like process
 - Change/incremental development
 - Project monitoring through various measurements and tools (e.g., Datrix/EMERALD/COMET)
Overview: Approach (Design)

- General approach to the study:
 - Various measurement data.
 - Identify problem prone modules
 - Characterize problem prone modules
 - Conclusions based on above analyses.

- Classification: observational

- 5 different releases
 - Consistency among releases
 - assessment and understanding
 - Guidance for new release
 - prediction and control
Risk Identification: Why?

- Risk and 80:20 rule
 - Risk: (high) probability of undesirable situations or consequences
 - 80:20 rule: 80% of problems traceable to 20% of components
 - Need risk identification

- Problem-prone modules
 - Likely to contain substantially more internal or development defects.
 - (Fault-prone: in-field failures)
 - Identification of the modules
 - Corrective/remedial actions

- Identify problem prone modules
 - Data: past defect and other metrics.
 - Technique: risk identification.
 - Followup: Characterization.
Risk Identification: How?

- Techniques used in Nortel Networks:
 - EMERALD: mainly multiple regression and logistic analysis, with limited use of neural networks.
 - COMET: principal component analysis (PCA) and discriminant analysis.

- New techniques:
 - Tree-based modeling with S-PLUS
 - CART with SAS

- Primary technique here: TBM.
 - generic comparison: Tian SQP paper.
 - specifics: later
Product and Defect Metrics

• Defect metrics:
 ▶ DF: defect fixes
 ▶ Applied in response to testing failures.
 ▶ DF vs. failure/fault counts:
 – DF captures propagation information.
 – DF is identified with specific modules.
 ▶ Available in project data depository
 ▶ Data transformed to percentages.

\[
DF = \frac{DF_{raw}}{DF_{max}} \times 100\%
\]

• Product metrics:
 ▶ From EMERALD, a Nortel tool/product
 ▶ Underlying analyzer for procedure-level metrics
 ▶ Module level metrics ~ DF
Product Metrics: Details

• 53 raw product metrics:
 ▶ volume,
 ▶ testability, decision complexity, dead code, independent path, structuredness,
 ▶ readability,
 ▶ section dependability,
 ▶ software science.

• 6 synthetic product metrics:
 ▶ OurRange: # metrics ∉ acceptable range
 – a rough indicator of module quality
 ▶ Level (or procedure type)
Risk Identification: EMERALD

- Techniques used:
 - Mixture of old and new.
 - Multiple regression & logistic analysis.
 - Neural network etc.

- EMERALD output:
 - \texttt{OpRisk}: likelihood of field defect.
 - Values: “green”, “R”, ..., “RRRRRRR”.
 - Other output also possible.
 - But not DF for this model
 - Identifying but not characterizing
 - Try other models
TBDMs: Why?

- Risk identification:
 - Assumption (in traditional techniques):
 - linear relation
 - uniformly valid result
 - Reality of defect distribution:
 - isolated pocket
 - different types of metrics
 - correlation/dependency in metrics
 - qualitative differences
 - Need new risk id. techniques.

- Risk characterization:
 - Identified, then what?
 - Result interpretation.
 - Remedial/corrective actions.
 - Extrapolation to new product/release.
 - TBDMs appropriate.
TBM & TBDMs: Ideas

• TBDMs: tree-based defect models using tree-based modeling (TBM) technique

• Decision trees:
 ▶ multiple/multi-stage decisions
 ▶ may be context-sensitive
 ▶ natural to the decision process
 ▶ applications in many problems
 – decision making & problem solving
 – decision analysis/optimization

• Tree-based models:
 ▶ reverse process of decision trees
 ▶ data ⇒ tree
 ▶ idea of decision extraction
 ▶ generalization of ”decision”
TBM: Types and Applications

- Key "selling" points:
 - intuitiveness and interpretation
 - compare to PCA, NN
 - quantitative & qualitative info.
 - hierarchy/importance/organization

- Past applications:
 - social sciences
 - Selby&Porter: Amadeus project
 - Tian et al:
 - NASA/SEL work (area IV)
 - IBM product defects: with Troster
 - IBM TBRM: 8317 coverage
 - SMU: UMM/testing, Nortel work
TBM: Technique

• Technique: tree-based modeling
 ▶ Tree: nodes=data-set, edges=decision.
 ▶ Data attributes:
 – 1 response & n predictor variables.
 ▶ Construction: recursive partitioning.
 ▶ Usage: relating response to predictors
 – $Y = Tree(X_1, \ldots, X_n)$
 – understanding vs. predicting
 – identification and characterization
 ▶ Works for mixed-types of data.
 ▶ Tree growing and pruning.

• Algorithm: Fig.1
 ▶ regression tree and example
 ▶ classification tree: modify Step 3
TBDMs: Result for NT-X

- Overall result: Fig. 2
 - Similar results for other releases
 - General understanding: simplicity/pruning

- How to read each node?
 - DF and node size summary

- Split conditions
 - Distinguishing characteristics
 - Root to leaf: order of importance
 - Metrics selected out of 59 by algorithm:
 - Halstead program length (HalLen)
 - # basic utility routines (Level1)
 - # include files (FilIncNbr)
 - comments volume average (ComStrAvg)
 - Halstead level (HalLv1)
TBDMs: Result for NT-X

- Identifying problem prone modules
 - Identified leaf nodes (Table 1)
 - Comparison to other nodes (Fig. 2)
 - Isolated pockets: llll, rr (rrl + rrr)
 - Groups vs. individual identification

- Characterizing problem prone modules
 - Split conditions as characterization
 - Symptoms of problems
 - Further analysis ⇒ systematic problems
 - Corrective/remedial actions
 - Future process/product improvement
Other TBDM Results

• TBDM performed:
 ▶ DF ~ metrics (previous)
 ▶ DF ~ $OpRisk$
 ▶ DF ~ all

• EMERALD result validation
 ▶ TBDM set1: tot.fix ~ $OpRisk$
 ▶ TBDM set2: tot.fix ~ all
 ▶ Consistent pattern
 ▶ Reasonable predictions, but...
 – not much constructive info.
TBDMs: NT-X vs. IBM LS and NS

• IBM products for comparison:
 ▶ LS and NS: A legacy and a new system
 ▶ Large s/w systems: 995, 1302 modules
 ▶ Metrics: DF + (11, 15) other
 – design (6), size (2), complexity (5, 3)
 – change (2 for LS)

• Results for IBM LS and NS:
 ▶ LS: change, size, data complexity
 ▶ NS: design and control complexity
 ▶ Problem-prone modules: Table 2

• Comparison: NT-X similar to IBM LS
 ▶ Common traits of legacy systems
 ▶ Implications: similar initiatives
Recommendation: Integrated Strategy

- Main considerations:
 - Existing tools and infrastructure
 - Past experience and domain knowledge
 - Applicability and effectiveness of new risk identification techniques
 - Tailoring for your environment

- Specific for Nortel Networks:
 - Measurement: existing tools/databases
 - Identification: EMERALD
 - Characterization: TBDMs (this paper)
 - Cross validation: both
 - Follow-up: causal analysis needed
 - but TBDMs can help/guide
Recommendation: Lifecycle Integration

- Main considerations:
 - Process and data availability
 - Experience/infrastructure/tools/etc.
 - Different focus, but similar techniques?
 - Tailoring for your process/product

- Lifecycle integration:
 - Analysis of inspection/other data
 - Analysis and feedback loop
 - Our current/future research projects
 - QA and improvement focus:
 - defect prevention
 - defect detection and removal
 - defect containment
Conclusions and Perspectives

● Problems addressed:
 ▶ Large telecommunication systems.
 ▶ Multiple releases, diverse components
 ▶ Uneven DF distribution (80:20 rule)
 ▶ Need risk identification and characterization for corrective/remedial actions

● Conclusions: an effective strategy
 ▶ Existing measurement tools/infrastructure
 ▶ EMERALD for risk identification
 ▶ TBDMs for risk characterization
 ▶ TBDMs guided follow-up actions

● Future work:
 ▶ Lifecycle approach to quality
 ▶ Progression: qualitative ⇒ quantitative