Empirical Software Engineering

CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module IIc: Other Risk Id Techniques

- PCA/DA and Application in Telecom
- NN and Applications
- OSR and Application in NASA/SEL
PCA & DA Study: Overview

- **PCA**: principal component analysis
 - idea of linear transformation
 - produce uncorrelated i.v.
 - reduce dimensionality

- **DA**: discriminant analysis
 - discriminant function
 - combine with other techniques

- Application: BNR/Nortel Telecom

PCA & DA Study: Context/Design

● Goal/Motivation:
 ▶ risk id as a classification problem
 ▶ DA, TBM, NN, Pattern Recognition
 ▶ technique used: DA in connection with PCA and logistic analysis

● Experimental context:
 ▶ system profile: Table 1.
 ▶ module classification:
 – new, changed, unchanged
 – effectively use logistic regression

● Experimental design:
 ▶ observational (post-mortem analysis)
 ▶ training: 2/3; testing 1/3; randomly
PCA & DA Study: Data

- d.v.: faults
 - between coding and operational phases
 - fault distribution: Table 2
 - risk: fault-prone or faults \(\geq 5 \)

- i.v.: design metrics
 - early quality prediction
 - modules consists of files
 - mean = 12, median = 4
 - design metrics defined on call graph and control flow graph
 - 9 specific metrics: Table 3
PCA & DA Study: Analysis

- Problem: classification into fault-prune and no-fault-prune via discriminant analysis

- Analysis procedure/techniques:
 - encode categorical variable
 - standardization
 - PCA to make model stable
 - model selection
 - discriminant analysis

- Encode categorical variable (covariates)
 - encoding: change (see earlier)
 - logistic regression idea

- Standardization: transform data to make mean = 0, and std.dev. = 1.
PCA & DA Study: Analysis

- **PCA: why?**
 - correlated i.v.’s leads to unstable models
 - extreme case:
 - linearly dependent \Rightarrow singularity
 - linear transformation (PCA) \Rightarrow
 - uncorrelated PCs (or domain metrics)

- **PCA: how?**
 - covariance matrix: Σ
 - solve $|\Sigma - \Lambda| = 0$ to obtain eigenvalues
 - λ_j along the diagonal for the diagonal matrix Λ
 - λ_j’s in decreasing value
 - decomposition: $\Sigma = P^T \Lambda P$
 - P: matrix of eigenvectors
 - (transformation used)
PCA & DA Study: Analysis

• Obtaining PCA results:
 ▶ transformation: $D = ZT$, where
 – Z is the standardized metrics
 – T is the transformation matrix
 ▶ Λ, P, T calculated by various statistical packages/tools

• PCA result interpretation:
 ▶ eigenvalues \approx explained variance
 ▶ first few domain metrics (PCs) explain most of the variance
 (typically 3 to 5)
PCA & DA Study: Analysis

● Using PCA results:
 ▶ uncorrelated PCs
 ⇒ good/stable linear models
 ▶ only a few PCs are necessary
 ▶ establish significance level

● Models selection:
 ▶ choose domain metrics
 ▶ also choose covariates
 ▶ judge by the discriminant analysis model
 ▶ algorithm in Khoshgoftaar paper
PCA & DA Study: Analysis

- DA: how?
 - define discriminant function
 - classify into G_1 and G_2
 - G_1: not fault-prune
 - G_2: fault-prune
 - definitions: (4) through (8)
 - other/similar definitions possible

- DA evaluation:
 - fit: misclassification rate
 - prediction: from training to test sets
 - misclassification types:
 - I: G_1 to G_2 false alarm
 - II: G_2 to G_1 missed fault-prune
 prefer II to be lower than I
PCA & DA Study: Result

- PCA results: Table 4
 - only 3 PCs (domain metrics) needed
 - powerful tool to interpret data

- DA/PC model selection
 - $model_1$: PCs only, select all 3 PCs
 - $model_2$: all 3 PCs and 2 covariates

- DA results:
 - Tables 5, 6, 7, 8
 - DA fit: no significant differences
 - DA prediction: important differences
 - reuse an important factor
PCA & DA Study: Conclusions

• Positive results (Authors):
 ▶ DA for risk identification
 (identifying fault-prune modules)
 ▶ design metrics useful indicators
 ▶ reuse information valuable
 ▶ predictive quality more important

• Other observations (Tian):
 ▶ much needed before DA
 ▶ data treatment/transformation effect
 ▶ much statistics knowledge
 ▶ complexity and interpretation
 ▶ type I vs II misclassification
NN Study: Overview

- NN ideas and algorithms:
 - single neuron: computation unit
 - connection: layered network
 - algorithm: backward propagation

- NN applications:
 - use in command and control communication system (CCCS)
 - use in medical imaging system (MIS)
 - comparison baseline: multiple regression applied to the above two systems

- 1995 Paper by Khoshgoftaar, Pandya, and Lanning, ASE
NN Study: Context/Design

- Experimental context:
 - CCCS: large military software, in Ada (not much information given)
 - MIS: commercial software
 - 4500 routines, 400 KLOC
 - in Pascal, Fortran, assembler, and PL/M
 - 5 development, 3 year deployment

- Experimental design:
 - observational (post-mortem analysis)
 - training: 2/3; testing 1/3; randomly
NN Study: Data

- CCCS data:
 - d.v.: faults from system integration and test, and first year of deployment
 - i.v.: 8 selected out of 14
 (mostly D/C complexity and size)
 - 282 data points (2/3 vs 1/3)

- MIS data:
 - d.v.: changes due to faults discovered during system testing and maintenance.
 - i.v.: 11 similar metrics
 - 339 modules (less than 1/10) used
 (again, 2/3 training; 1/3 testing)
NN Study: Analysis

- NN ideas and organization:
 - neuron: basic computation unit
 - NN: multiple layers
 - each layer: multiple neurons
 - input from previous layer
 - output to next layer

- Computation at a neuron: 2 stages
 - weighted sum of input: \(h = \sum_{i=1}^{n} x_i \)
 (may include constant)
 - then activation function \(y = g(h) \)
 - threshold, piecewise-linear,
 - Gaussian, sigmoid (below), etc.
 - in Khoshgoftaar: \(y = \frac{1}{1 + e^{-h/T}} \)
 - illustration in Tian or Khoshgoftaar
NN Study: Analysis

- Overall computation:
 - layers of neurons
 - input layer: raw data feed
 - other layers: computation at \(n \) neurons
 - objective: minimize prediction error at the output layer

- algorithm: backward propagation
 - Fig. 4 in Tian SQP 2000
 (actually algorithm ideas, not exact)
 - trace through steps
 - error: deviance (sum of error sqr)
 - specific adjustments: Khoshgoftaar p.147
 (learning and momentum rates: \(\eta, \alpha \))
NN Study: Result

- Model performance measure:
 - $ARE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{y_i} \right|$
 - y_i transformed by adding 1 to raw data
 - discussion in Khoshgoftaar p.143
 - other measure: rse (rel.std.err)

- NN model produced:
 - input data scaled to [0, 1]
 - initial weights: random in [–1, 1]
 - learning/momentum: $\eta = 1.5$, $\alpha = 0.7$
 - 1 hidden layer best, from 1, 2, 3 tried
 - 16 neurons for CCCS and 18 for MIS
NN Study: Summary

- NN result summary:
 - Table 1
 - comparison to regression model
 (RM details given in Tables 2 & 3)
 - NN is clearly superior

- Other comments (Tian):
 - good example of NN technique
 - not really focus on risk identification
 (estimating # faults)
 - but in other work by authors
 - Khoshgoftaar/Szabo (ref. in Tian/SQP):
 PCA & NN for risk id.
OSR Study: Overview

- OSR: optimal set reduction
 - pattern matching ideas
 - OSR technique: Briand et al., 1992 (OSR for effort estimation)
 - with application: 1993 Paper by Briand/Basili/Hetmanski, TSE 19(11)

- OSR applications:
 - NASA/SEL: fault risk
 - baseline for comparison:
 - classification trees
 - logistic analysis
 - (with or without PCA for LA)
 - demonstrate superiority
OSR Study: Context/Design

- Experimental context:
 - NASA/SEL software in Ada
 - 146 components and 260 KLOC

- Experimental design:
 - high risk: procedure/function with error
 - particularly, reading/writing to var/struct
 - otherwise, low risk
 - equal number of low and high risk components to build unbiased model
 - observational (post-mortem analysis)
OSR Study: Data

• Metrics data derived from hypotheses about the software design process

• Data categories (via hypotheses):
 ▶ context coupling
 ▶ parameterization
 ▶ visibility control
 ▶ reuse
 ▶ component size
 ▶ structural complexity

• Obtaining the data
 ▶ ASAP static-analysis program
 ▶ UNIX utilities and SAS program
 ▶ 15 metrics listed in Appendix A
OSR Study: Analysis

- OSR ideas and organization:
 - pattern extraction
 - algorithm sketch: Fig.9 in Tian/SQP
 - detailed algorithm: Appendix B
 - other detailed throughout paper
 - organization/modeling results:
 - no longer a tree, see example
 - general subsets, may overlap

- Similarities to TBM
 - pattern ~ partition
 - entropy ~ deviance
 - reduction of the above
OSR Study: Result

- Model performance measure: accuracy
 - completeness:
 % high risk modules identified
 - correctness:
 % high risk modules correctly identified
 - performance comparison: Table 1

- OSR conclusions:
 - accuracy: better than alternatives
 - LA tedious & less interpretable
 - TBM simplistic
 - interpretable structure (similar to TBM)

- Comments: fair comparison?