Empirical Software Engineering
CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module IVa: Metrics Evaluation

• Metrics and Measurement in ESE

• Self and Empirical Evaluation

• Formal Model Based Evaluation
Overview: Measurement

To achieve the goal of controlled software development, we need to:

- Develop an *engineering* discipline;

- Measure and evaluate the working product;

- Construct a *scientific* model for program measurement:
 - Techniques from other disciplines;
 - Develop new techniques if necessary;
 - Basic questions:
 - What to measure: goal & environ.
 - How to measure it: metrics & tools
 - Selection and validation
Complexity Measurement

Basic assumption: The lower the complexity, the more desirable:

- cheaper to build;
- easier to maintain;
- more reliable;
- ...

Usage of Complexity Measurement:

<table>
<thead>
<tr>
<th>activity</th>
<th>time</th>
<th>nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>assessment</td>
<td>a posteriori</td>
<td>passive</td>
</tr>
<tr>
<td>prediction</td>
<td>a priori</td>
<td>passive</td>
</tr>
<tr>
<td>control</td>
<td>persistent</td>
<td>active</td>
</tr>
</tbody>
</table>
Internal/External Measures

Internal Measures: depend on programs only. Complexity measures \(\subset \) internal measures;

External Measures: depend also on other external factors — so called -ilities.

Relations: correlated but not uniquely determined. To use internal measures to predict external measure, we need:

- Discover *appropriate* internal measures;
- Establish *predictive* relations;
- Use and validate predictions.
Measures and Dimensions

Complexity measures are multi-dimensional because of:

1. Multi-facet *internal* organization:
 - Presentation;
 - Control;
 - Data.

2. Multi-purpose *external* usage under different activities.
 - Assessment: Basili’s GQM;
 - Prediction: Boehm’s COCOMO;
 - Control: Boehm’s spiral.
Measurement in ESE

• Measurement: central activity in ESE
 ▶ context of measurement/expr/study
 ▶ measurements associated with different experimental designs
 ▶ measurement and data collection
 ▶ measurement result analysis
 ▶ measurement/analysis result presentation, interpretation, and drawing conclusions

• Interpreted as measurement activities:
 ▶ definition: context, design
 ▶ gathering: data collection
 ▶ analysis/followup:
 analysis, presentation, interpretation
Measurement Evaluation

- Measurement typically used to evaluate SE artifacts/activities.

- Also need to evaluate measurements/metrics themselves:
 - properly defined?
 - properly used?
 - lead to useful results?

- Use of evaluation results:
 - selecting existing measures/metrics
 - proposing new ones
 - under what context?
Measurement Evaluation

- Types of metrics evaluation:
 - self evaluation
 - empirical evaluation
 - formal model based evaluation

- Self evaluation of new metrics:
 - when proposed/defined
 - demonstrate the use & usefulness
 - possible subjective bias
 - limited scope & validity
Metrics Evaluation

- Empirical evaluation of metrics:
 - a set of given metrics
 - empirical study set up
 - focus: how these metrics work
 - other performance measures not subjected to evaluation
 - typical evaluation objects:
 - internal (complexity) metrics

- Evaluation based on formal models:
 - based on empirical studies/evidences
 - generalized theory/models
 - development: after many empirical evaluation studies
Formal Evaluation Models: Prather

- Prather’s axioms:
 - \[m(S_1; S_2; \ldots; S_n) \geq \sum_i m(S_i) \]
 - \[2(m(S_1) + m(S_2)) \]
 - \[\geq m(\text{if } P \text{ then } S_1 \text{ else } S_2) \]
 - \[> m(S_1) + m(S_2) \]
 - \[2m(S) \geq m(\text{while } P \text{ do } S) > m(S) \]

- Observations/discussions:
 - earliest attempt on axiomatic model
 - some intuition captured:
 - e.g., interactions
 - limited scope
 - justification for some axioms?
Formal Evaluation Models: Fenton

- Fenton’s hierarchical complexity:

 ▶ $m(seq(F_1, \ldots, F_n))$
 \hspace{1cm} = g_n(m(F_1), \ldots, m(F_n))$
 ▶ $m(F(F_1 \text{ on } x_1, \ldots, F_n \text{ on } x_n))$
 \hspace{1cm} = h_F(m(F), m(F_1), \ldots, m(F_n))$

- Observations/discussions:

 ▶ general framework
 - too general?
 ▶ contrast with Prather’s work
 ▶ relation to later work
 - add specifics
 - measurement theory based work
Formal Evaluation Models: Weyuker

- Weyuker’s Desirable Properties:

1. \((\exists P, Q) \ (\forall(P) \neq \forall(Q))\)
2. \(\{P, \forall(P) = c\}\) is finite
3. \((\exists P, Q) \ (P \neq Q) \land (\forall(P) = \forall(Q))\)
4. \((\exists P, Q) \ (P = Q) \land (\forall(P) \neq \forall(Q))\)
5. \((\forall P, Q)\)
 \((\forall(P) \leq \forall(P;Q) \land \forall(Q) \leq \forall(P;Q))\)
6. \((\exists P, Q, R)\)
 \((\forall(P) = \forall(Q) \land \forall(P;R) \neq \forall(Q;R))\)
7. \((\exists P, Q) \ (P = \text{perm}(Q) \land \forall(P) \neq \forall(Q))\)
8. \((\forall P) \ (\forall x, y) \ \forall(P) = \forall(P^x_y)\)
9. \((\exists P, Q) \ (\forall(P) + \forall(Q) < \forall(P;Q))\)
Formal Evaluation Models: Weyuker

- About Weyuker’s properties:
 - more systematic treatment
 - inspired/lead to many followup work
 - positive: refinement
 - negative: counter examples
 - other: development & alternatives

- Tian/Zelkowitz as followup:
 - merit of Weyuker’s properties
 - some universally satisfied
 - basis for universal axioms
 - some for certain types of metrics
 - classification?
 - a theory based on the above
 - an evaluation/selection process
Formal Eval. Models: Tian/Zelkowitz

- Tian/Zelkowith Theory/Framework

- **Axioms:** Define program complexity and state common properties.

- **Dimensionality Analysis:**
 provide the basis for metrics classification
 - Aspects or dimensions:
 - presentation, control, data;
 - Levels: lexical, syntactic, semantic.

- **Classification Scheme:** Define mutually exclusive and collectively exhaustive classes.

- More details later.