Empirical Software Engineering

CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module Ia: ESE Overview

• ESE: Empirical Software Engineering

• About CSE 8340

• Relation to Software Measurement

• GQM and ESE
What Is ESE?

- **Empirical Software Engineering (ESE):** Applying empirical techniques/methods to solve software engineering problems.

- Objects of study:
 - Observation of SE activities.
 - Case studies in SE.
 - Controlled experiments.

- Analysis and conclusions:
 - Data from the above activities.
 - Statistical and other analyses.
 - Conclusions draw based on data/analyses.

- Typically goal driven (solve...).
Software Engineering Perspective

- Key components of S/W Eng.
 - Methods and processes
 - Formal foundations (math/theory)
 - Experimentation (scientific)

- Methods and process
 - Methods and methodologies
 - structured programming
 - OO
 - specialized methods
 - specification: formal vs informal
 - black-box/white-box/random testing
 - Process models
 - Mixing method and process
 - clean room example
 - 7313, 7314 and other MS/CS courses.
Software Engineering Perspective

- Formal foundations
 - Mathematics/logic/statistics
 - formal specifications
 - program verification
 - statistical models
 - Computer science
 - language and ADT ⇒ OO
 - systems/tools/CASE
 - Formal models on metrics: Area IV.

- Experimentation (scientific)
 - Trace/case studies
 - Controlled experiment
 - Measurement and analysis
 - Empirical validation
 - Observation-based vs. goal-oriented
 - This class 8340: Areas I, II, III.
ESE in Software Processes

• Mega-Process: Initiation, Development, Maintenance, Termination.

• Process Variations:
 ▶ Waterfall: sequence and dependencies;
 ▶ Iterative: incremental, divide & conquer;
 ▶ Spiral: risk management;
 ▶ Mixed/synthesized.

• ESE: Measurement and analysis throughout different components of the products and processes.

• Relation to CSE 7313, 7314, etc.
ESE in SE Activities

- Observational studies:
 - Passive observations of industrial practice, etc.
 - Try to draw preliminary conclusions based on observations and related data.
 - Multiple observations \Rightarrow validation.

- Case studies:
 - Semi-active.
 - Pre-set study goals.
 - Conclusions need further validation.

- Controlled experiments:
 - Active design and experimentation.
 - Closest to scientific experiments.
 - Solid conclusions.
ESE in Software Measurement

- Example: testing evaluation
 - Test results and expenditure.
 - Test cases and measurement.
 - Internal measurements: size/complexity/etc.
 - Environmental data: process/people/setup
 - Evaluation results: reliability.

- Data/analysis from other phases:
 - Product: code, documents etc.
 - external: quality, cost, schedule etc.
 - Process: entities/relations/environment
 - People: experience etc.
 - Various assessment/prediction/improvement.

- Relation to CSE 8314.
ESE and Product Measurement

- Product specific (static):
 - Code, testcase, document
 - Structure vs. information flow
 - Control/data/presentation
 - Metrics and data collection
 - ESE: product quality/etc. questions?

- Execution specific (dynamic):
 - Path verification (white-box)
 - Usage to component mapping (black-box)
 - Measurement along the path
 - Usage of the measurement data
 - ESE: performance/reliability/etc.?
ESE and Other Measurement

- Process characteristics
 - Entities, relationships, and integration
 - Preparation, execution and followup

- People characteristics
 - Skills and experience
 - Roles: planners/developers/testers
 - Process management and teams

- Environmental characteristics
 - Hardware/software environment
 - Product/market environment

- ESE: based on above measurements.
How Does CSE 8340 Fit In?

• (Area I) ESE fundamentals:
 ▶ Generic activities and steps.
 ▶ Overall framework.

• (Areas II&III) ESE studies:
 ▶ Assessment/prediction focus:
 – hypothesis testing related studies.
 ▶ Improvement focus:
 – risk id./analysis related studies
 ▶ Other empirical studies.

• (Area IV) Metrics evaluation:
 ▶ Empirical ⇒ formal model.
 ▶ As extensions to hypothesis testing etc.
 ▶ Formal models for metrics evaluation.
ESE Framework: GQM

- **Background:**
 - Software Engineering Laboratory
 - TAME projects
 - Key personal: Basili et al.

- **Software Engineering Laboratory**
 - NASA/GSFC
 - University of Maryland
 - Computer Sciences Corp.
 - 1st SEI process award recipient
 - Software measurement and ESE:
 - among the first ESE studies
 - software measurement and analysis
 - goal-question-metric (GQM) paradigm
 - experience factory (EF)
ESE and GQM

- GQM: what is it?
 - Goal: goal of the (measurement) study.
 - Questions: questions related to goals.
 - Metrics: metrics answering questions.

- GQM background/foundations:
 - Goal oriented approach.
 - Measurement based.
 - Scientific experimentation.
 - Hierarchy or paradigm: diagram.

- Relation to ESE:
 - Can serve as general guidelines for ESE.
 - Related EF: similar to scientific labs in ESE.
ESE and EF

● EF: What is it?
 ▶ Experience Factory
 ▶ Separation of concerns
 ▶ In connection with GQM/TAME
 ▶ In ESE: Similar to scientific labs that conducts scientific experiments.

● Experience Factory
 ▶ Input from product organization
 ▶ Output to product development
 ▶ Internal organization
 ▶ Implementation in NASA/SEL
GQM/EF Recent Development

- Research activities:
 - New NSF-funded Center:
 - Univ. Maryland and USC (Boehm)
 - GMQM and other activities
 - Fraunhofer Institute and Centers
 - Others

- GQM extensions:
 - GMQM: success model
 - Specialized guidelines
 - Kitchenham et al.
 - Tian measurement/model, etc.
 - More emphasis on scientific experimentation

- EF beyond NASA/SEL.