Empirical Software Engineering
CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module Ib: ESE Guidelines

• Basic Ideas

• Topic Areas or Generic Steps

• Specific Guidelines
ESE Guideline

- Why a guideline?
 - More ESE research activities
 - Maturing of SE and ESE
 - Practical concerns:
 - reader/students
 - researchers/meta-analyst
 - reviewers/editors
 - journals/conferences etc

- Perfect timing for CSE 8340
ESE Guideline: Basis

- Internal basis for the guideline:
 - Research experience in ESE
 - Researcher experience in ESE
 - from both author/reviewer perspectives
 - Other CS/SE work

- External basis for the guideline:
 - Scientific method
 - Implicit guidelines used for emp. studies in other mature disciplines (most natural science)
 - (Explicit) guidelines for emp. studies in other disciplines (e.g., medical)
 - External experts as co-authors

- Result: Preliminary guidelines.
ESE Guideline: Sources

- Authors as information sources:
 - Diverse background
 - Experience in SE/ESE/statistics/others

- Other important sources:
 - Similar guidelines for medical journals
 - Meta-analysis studies
 (studies of empirical studies and results)
 - Papers about statistical applications:
 - positive (guide, ”what should be done”)
 - negative (”what was wrong/to avoid”)
 - Other ”soft” sciences
 - List of specific references in paper
ESE Guideline: Topic Areas

1. Experimental context

2. Experimental design

3. Conduct experiment and data collection

4. Analysis

5. Presentation of result

6. Interpretation of result
Guideline by Topic Areas

- Guideline organization:
 - by topic areas (TAs, or steps)
 - introduction of general ideas, then
 - specific guidelines in the TA

- Notations and shorthands:
 - TA\text{x}: topic area "x" (numbered)
 - Specific guidelines within each TA
 - TA shorthands:
 - C(ontext), D(esign), D(ata) C(ollection), A(nalysis), P(resentation), I(nterpretation)
 - Example: guideline \#4 in TA3 (data collection) is labeled/numbered DC4.
TA1: Context

- Elements of experimental context:
 - background: industry or new
 - research hypothesis
 (if any ⇒ goal-oriented)
 - related research
 - specifics for the above 3

- Types of empirical studies (ES):
 - observational
 - formal experiments
 - other classifications possible
 - re-visit for result interpretation
TA1: Context

- C1: Clearly specify industrial context
 - entities, attributes, measures that capture contextual information
 - in the context of observational or experimental studies

- C1 in observational studies:
 - industry & s/w dev organization
 - staff skill/experience
 - s/w tools/process used, etc.

- C1 in formal experiments:
 - similar info as above
 - do not over-simplify
 (what people call “toy” problems)
TA1: Context

● C2: Hypothesis (if any)
 ▶ clearly state before study
 ▶ theoretical basis for the hypothesis
 ▶ implications?

● C3: if exploratory research:
 ▶ questions to address, and how
 ▶ prior to data analysis

● Comment: goal-oriented assumption
 (GQM as the overall framework)

● C4: describe related research.
TA2: Design

- Elements of experimental design:
 - population
 - sampling technique and rationale
 - treatment (or intervention)
 - bias and sample size

- D1: Identify the population.

- D2: Define sampling.

- Comment: D1 and D2 to ensure that the study generalizable because it is representative of an interesting population.

- Other guidelines (D3-D11) to ensure statistical validity and reduce bias.
TA2: Design

- Statistical validity

 ▶ D4: keep it simple
 ▶ D5: define the experimental unit
 ▶ D6: preparation for formal experiment by pre-experiment and adequate sample size

- Reducing bias

 ▶ D3 and D10: define treatment (intervention) and describe how.
 ▶ D7: use appropriate level of blinding
 ▶ D8: vested interest (own work)?
 ▶ D9: careful with control
 ▶ D11: outcome related to goal

- Comment: minimize in/external threats to result validity and interpretation.
TA3: Data Collection

- Conducting experiment: domain specific.

- Data collection: common guidelines.
 - DC1: define all measures fully.
 (what we do in CSE 8314)
 - DC2: properly treat subjective ones
 - DC3: accuracy/completeness of DC
 - DC4: (for surveys etc.)
 response rate & representativeness
 - DC5: drop-outs? (for experiments)
 - DC6: other performance measures also

- Comment: DC guidelines to ensure proper, unbiased data supplied to analysis.
TA4: Analysis

- Guidelines independent of the types of analyses performed.

- Types of analyses:
 - classical vs Bayesian: frequency vs pre-post relations
 - parametric vs non-parametric
 - measurement types
 - non-traditional statistical analyses
 - consult statisticians/other experts

- Comment: data/context sensitive guidelines possible, but beyond the scope of general guidelines
TA4: Analysis

• Specific analysis guidelines:
 ▶ A1: careful with multiple testing
 (“torture/fishing” the same set of data?)
 ▶ A2: consider using blind analysis
 (reduce subjective tendencies)
 ▶ A3: perform sensitivity analysis
 ▶ A4: match data with test
 ▶ A5: verify the results

• ”test” = statistical/hypothesis test here

• Comment: proper, unbiased analysis to ensure meaningful results
TA5: Result Presentation

- Presentation of results:
 ensures that others "get it".

- Presentation guidelines:
 - P1: describe/ref. for stat. procedures
 - P2: statistical package used
 - P3: enough details (sig. level etc.)
 - P4: raw data whenever possible
 (independent verification)
 - P5: appropriate descriptive statistics
 (related to details P3)
 - P6: make appropriate use of graphics
 (interesting common errors listed)

- Comment: ensure the readers understand
 the results and the context.
TA6: Result Interpretation

- Interpretation of results: avoid misinterpretation.

- Interpretation guidelines:
 - I1: describe inferential statistics or predictive models (should this be part of the analysis?)
 - I2: stat. significance ≠ practical importance
 - I3: define the type of study (related context...)
 - I4: specify study limitations

- Comment: results meaningful, generalizable? follow-up possible?