Empirical Software Engineering

CSE 8340 — Fall 2002

Prof. Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275
(214) 768-2861; Fax: (214) 768-3085
www.engr.smu.edu/~tian/class/8340.02f

Module Ic: ESE Example

• ESE Study as an Example

• Hypothesis about FM

• Analysis and Results
ESE Example and Guidelines

- **ESE Example:**
 1997 paper by Pfleeger and Hatton

- Use ESE Guidelines:
 2002 paper by Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, Emam, Rosenberg

- Context of our discussion:
 - Guideline applied to ESE study.
 - 6 steps (topic areas)
 - Focus on analysis (and conclusions)
ESE Study on FM

- Hypothesis testing:
 - Can FM deliver?
 - Implicit hypothesis: Promises of FM.
 - Informal hypothesis testing.

- What is FM?
 - FM: formal methods.
 (formal spec. & formal verification)
 - Applied to software development (phases)
 - Basic idea in 7314 and 8317
 - Specifics in Pfleeger/Hatton

- Past work on same question:
 see insert by Fenton and Pfleeger.
TA1: Context

- C1: Clearly specify industrial context
 - Company: Praxis
 - Product: air-traffic control IS
 - Customer: UK Civil Aviation Authority
 - Size: 200,000 LOC in C
 - observational studies/details below

- FM in requirement:
 - ER analysis
 - real-time Yourdon-Constantine SA
 - formal spec. language: VDM, CCS etc.

- FM in design:
 - VDM/CCS specs for code
 - FSM to define concurrency
 - pseudocode for UI
TA1: Context

• C2: Hypothesis (if any)
 ▶ Can FM deliver?
 ▶ null and alternative hypothesis
 ▶ basis: past work in FM

• C3: if exploratory research: No.

• C4: describe related research
 ▶ insert by Fenton and Pfleeger.
 ▶ much promises
 ▶ no conclusive results
TA2: Design

• Elements of experimental design:
 ▶ population
 ▶ sampling technique and rationale
 ▶ treatment (or intervention)
 ▶ bias and sample size

• In Pfleeger/Hatton study:
 ▶ population: 1 product
 ▶ observational case study
 ▶ all fault data used
 ▶ D1-D11 not formally addressed
TA3: Data Collection

- Data collection: common guidelines.
 - DC1: define all measures fully.
 - DC2: properly treat subjective ones
 - DC3: accuracy/completeness of DC
 - DC4: resp. rate & representativeness
 - DC5: drop-outs? (for experiments)
 - DC6: other performance measures also

- In Pfleeger/Hatton:
 - DC1: measure definition
 - fault reports from in-house testing
 - in connection with data analysis
 (particularly: understanding data)
 - DC2–DC6 irrelevant.
TA4: Analysis

- Analysis guidelines:
 - A1: careful with multiple testing ("torture/fishing" the same set of data?)
 - A2: consider using blind analysis (reduce subjective tendencies)
 - A3: perform sensitivity analysis
 - A4: match data with test
 - A5: verify the results

- In Pfleeger/Hatton:
 - in connection with analysis steps
 - 5 steps (details later)
 - fairly simple statistics
 - also include result presentation, interpretation and conclusions.
TA4: Analysis

• Step 1: Understand the data
 ▶ DC1: define all measures fully (previous guideline topic area)
 ▶ fault reports are actually failures
 ▶ severity 1, 2, 3: all failure related
 ▶ around 3000 fault reports
 ▶ 1990 to June 1992 (delivery)
 ▶ traced to modules (which is changed?) but little root cause analysis

• Step 2: Looking for diff. in #changes
 ▶ module changes from fault reports
 ▶ quantitative questions regarding:
 - FM quantitatively affect code quality?
 - Was one FM superior to another?
 ▶ results presented in Tables 1 and 2
 ▶ related interpretation/discussions
 ▶ conclusion: no sig. differences
TA4: Analysis

• Step 3: Look for trends
 ▶ one question (no sig. diff. in avg)
 leads to another (over time diff.?)
 ▶ results in Fig. 2
 ▶ related discussions:
 – onset of testing in qt.4
 – possible size/complexity diff.
 ▶ comment: uncontrolled factors

• Step 4: Conduct a code audit
 ▶ try to explain Step 3/Fig. 2 above
 ▶ potential faults remaining per module
 ▶ complexity analysis
 ▶ results: Fig. 3, high quality
 – simple design, loose coupling
 ▶ but not attributed to design methods
TA4: Analysis

- Step 5: Examine the results of unit testing
 - easy to test (and early)?
 - overall faults distribution:
 - insp.: 340, UT: 725, ST/AT: 2200
 - different from prev. studies
 - UT results: Table 3
 - formal lower than informal (UT pb.)
 - implications: formal better/cleanroom?
 - postdelivery ⇒ next question

- Step 6: Evaluate postdelivery changes
 - results: Table 4
 - formal better than informal
 - indistinguishable within different FM
 - comparison: Tables 5 and 6
 - direct & indirect effect of FM:
 - conformance to req. (direct)
 - highly testable system (indirect)
TA5: Result Presentation

• Presentation guidelines:
 ▸ P1: describe/ref. for stat. procedures
 ▸ P2: statistical package used
 ▸ P3: enough details (sig. level etc.)
 ▸ P4: raw data whenever possible
 ▸ P5: appropriate descriptive statistics
 ▸ P6: make appropriate use of graphics

• In Pfleeger/Hatton:
 ▸ simple statistics: no need to explain
 ▸ most of Px’s irrelevant
 ▸ in connection with data analysis
 ▸ good use of tables/graphics
TA6: Result Interpretation

• Interpretation guidelines:
 ▶ I1: describe inferential statistics or predictive models
 ▶ I2: stat. sig. ≠ practical importance
 ▶ I3: define the type of study
 ▶ I4: specify study limitations

• In Pfleeger/Hatton:
 ▶ simple statistics/interpretation
 ▶ most of Ix’s irrelevant
 ▶ in connection with data analysis
 ▶ summarized in lessons learned section
TA6: Result Interpretation

- Lessons about formal methods:
 - pre-delivery similar
 - UT and post-delivery: FM better
 - high-quality audit profile:
 - simple, independent components
 - FM in concert with other SE initiatives

- Lessons about empirical investigation:
 - data availability issue:
 - expr./size data, other projects, etc.
 - data consistency: fault vs failure
 - separate pre-/post-delivery data
 - other limitations
TA6: Result Interpretation

- Overall: inconclusive, but some indications

- Recommendation to practitioners:
 - data defn/coll in planning to evaluate task effectiveness and product quality
 - trend and relationship identification
 - Be skeptical: quantitative evidence?

- Comments by Tian:
 - focus: data analysis
 - simple statistics/interpretation
 - good ESE example
 - good ESE guideline test/example
 - relate to hw#2&3 analysis/critique