Empirical Software Engineering CSE 8340 — Spring 2014

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8340.14s

Module Ib: ESE Guidelines

• Basic Ideas

- Topic Areas or Generic Steps
- Specific Guidelines

ESE Guideline

- Empirical Research in S/w Eng. (ESE): 2002 paper by Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, Emam, Rosenberg (TSE 28(8):721-734).
- Why a guideline?
 - ▷ More ESE research activities
 - ▷ Maturing of SE and ESE
 - ▷ Practical concerns:
 - reader/students
 - researchers/meta-analyst
 - reviewers/editors
 - journals/conferences etc
- Perfect ground work for CSE 8340

ESE Guideline: Basis

- Internal basis for the guideline:
 - ▷ Research experience in ESE
 - ▷ Researcher experience in ESE
 - ▷ from both author/reviewer perspectives
 - ▷ Other CS/SE work
- External basis for the guideline:
 - Scientific method
 - Implicit guidelines used for emp. studies in other mature disciplines (most natural science)
 - (Explicit) guidelines for emp. studies in other disciplines (e.g., medical)
 - ▷ External experts as co-authors
- Result: *Preliminary* guidelines.

ESE Guideline: Sources

- Authors as information sources:
 - Diverse background
 - > Experience in SE/ESE/statistics/others
- Other important sources:
 - Similar guidelines for medical journals
 - Meta-analysis studies
 (studies of empirical studies and results)
 - ▷ Papers about statistical applications:
 - positive (guide, "what should be done")
 - negative ("what was wrong/to avoid")
 - ▷ Other "soft" sciences
 - ▷ List of specific references in paper

ESE Guideline: Topic Areas

- 1. Experimental context
- 2. Experimental design
- 3. Conduct experiment and data collection
- 4. Analysis
- 5. Presentation of result
- 6. Interpretation of result

Guideline by Topic Areas

- Guideline organization:
 - ▷ by topic areas (TAs, or steps)
 - ▷ introduction of general ideas, then
 - ▷ specific guidelines in the TA
- Notations and shorthands:
 - ▷ TAx: topic area "x" (numbered)
 - Specific guidelines within each TA
 - ▷ TA shorthands:
 - C(ontext), D(esign), D(ata) C(ollection), A(nalysis), P(resentation), I(nterpretation)
 - Example: guideline #4 in TA3 (data collection) is labeled/numbered DC4.

TA1: Context

- Elements of experimental context:
 - ▷ background: industry or new
 - ▷ research hypothesis (if any ⇒ goal-oriented)
 - ▷ related research
 - \triangleright specifics for the above 3
- Types of empirical studies (ES):
 - ▷ observational
 - ▷ formal experiments
 - ▷ other classifications possible
 - ▷ re-visit for result interpretation

TA1: Context

- C1: Clearly specify industrial context
 - entities, attributes, measures that capture contextual information
 - in the context of observational or experimental studies
- C1 in observational studies:
 - ▷ industry & s/w dev organization
 - ▷ staff skill/experience
 - ▷ s/w tools/process used, etc.
- C1 in formal experiments:
 - ▷ similar info as above
 - do not over-simplify
 (what people call "toy" problems)

TA1: Context

- C2: Hypothesis (if any)
 - > clearly state before study
 - ▷ theoretical basis for the hypothesis
 - ▷ implications?
- C3: if exploratory research:
 - questions to address, and howprior to data analysis
- Comment: goal-oriented assumption (GQM as the overall framework)
- C4: describe related research.

TA2: Design

- Elements of experimental design:
 - ▷ population
 - sampling technique and rationale
 - ▷ treatment (or intervention)
 - ▷ bias and sample size
- D1: Identify the population.
- D2: Define sampling.
- Comment: D1 and D2 to ensure that the study generalizable because it is representative of an interesting population.
- Other guidelines (D3-D11) to ensure statistical validity and reduce bias.

TA2: Design

- Statistical validity
 - ▷ D4: keep it simple
 - ▷ D5: define the experimental unit
 - D6: preparation for formal experiment by pre-experiment and adequate sample size
- Reducing bias
 - D3 and D10: define treatment (intervention) and describe how.
 - ▷ D7: use appropriate level of blinding
 - ▷ D8: vested interest (own work)?
 - ▷ D9: careful with control
 - ▷ D11: outcome related to goal
- Comment: minimize in/external threats to result validity and interpretation.

TA3: Data Collection

- Conducting experiment: domain specific.
- Data collection: common guidelines.
 - DC1: define all measures fully.
 (what we do in CSE 8314)
 - ▷ DC2: properly treat subjective ones
 - ▷ DC3: accuracy/completeness of DC
 - DC4: (for surveys etc.)
 response rate & representativeness
 - ▷ DC5: drop-outs? (for experiments)
 - ▷ DC6: other performance measures also
- Comment: DC guidelines to ensure proper, unbiased data supplied to analysis.

TA4: Analysis

- Guidelines independent of the types of analyses performed.
- Types of analyses:
 - classical vs Bayesian:
 frequency vs pre-post relations
 - ▷ parametric vs non-parametric
 - > measurement types
 - > non-traditional statistical analyses
 - > consult statisticians/other experts
- Comment: data/context sensitive guidelines possible, but beyond the scope of general guidelines

TA4: Analysis

- Specific analysis guidelines:
 - A1: careful with multiple testing ("torture/fishing" the same set of data?)
 - A2: consider using blind analysis (reduce subjective tendencies)
 - ▷ A3: perform sensitivity analysis
 - ▷ A4: match data with test
 - ▷ A5: verify the results
- "test" = statistical/hypothesis test here
- Comment: proper, unbiased analysis to ensure meaningful results

TA5: Result Presentation

- Presentation of results: ensures that others "get it".
- Presentation guidelines:
 - \triangleright P1: describe/ref. for stat. procedures
 - ▷ P2: statistical package used
 - \triangleright P3: enough details (sig. level etc.)
 - P4: raw data whenever possible (independent verification)
 - P5: appropriate descriptive statistics (related to details P3)
 - P6: make appropriate use of graphics (interesting common errors listed)
- Comment: ensure the readers understand the results and the context.

TA6: Result Interpretation

- Interpretation of results: avoid misinterpretation.
- Interpretation guidelines:
 - I1: describe inferential statistics or predictive models (should this be part of the analysis?)
 - ▷ I2: stat. significance ≠ practical importance
 - I3: define the type of study (related context...)
 - ▷ I4: specify study limitations
- Comment: results meaningful, generalizable? follow-up possible?