Empirical Software Engineering CSE 8340 — Spring 2014

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8340.14s

Module Ic: ESE Example

- ESE Study as an Example
- Hypothesis about FM
- Analysis and Results

ESE Example and Guidelines

- ESE Example: 1997 paper by Pfleeger and Hatton IEEE Computer 30(2):33-43.
- Use ESE Guidelines: 2002 paper by Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, Emam, Rosenberg (TSE 28(8):721-734).
- Context of our discussion:
 - ▷ Guideline applied to ESE study.
 - ▷ 6 steps (topic areas)
 - ▷ Focus on analysis (and conclusions)

ESE Study on FM

- Hypothesis testing:
 - ▷ Can FM deliver?
 - ▷ Implicit hypothesis: Promises of FM.
 - ▷ Informal hypothesis testing.
- What is FM?
 - ▷ FM: formal methods.
 - (formal spec. & formal verification)
 - Applied to software development (phases)
 - ▷ Basic idea in 7314 and 8317
 - Specifics in Pfleeger/Hatton
- Past work on same question: see insert by Fenton and Pfleeger.

TA1: Context

- C1: Clearly specify industrial context
 - ▷ Company: Praxis
 - Product: air-traffic control IS
 - ▷ Customer: UK Civil Aviation Authority
 - ▷ Size: 200,000 LOC in C
 - ▷ observational studies/details below
- FM in requirement:
 - ▷ ER analysis
 - ▷ real-time Yourdon-Constantine SA
 - ▷ formal spec. language: VDM, CCS etc.
- FM in design:
 - ▷ VDM/CCS specs for code
 - ▷ FSM to define concurrency
 - ▷ pseudocode for UI

TA1: Context

- C2: Hypothesis (if any)
 - ▷ Can FM deliver?
 - ▷ null and alternative hypothesis
 - ▷ basis: past work in FM
- C3: if exploratory research: No.
- C4: describe related research
 - ▷ insert by Fenton and Pfleeger.
 - ▷ much promises
 - ▷ no conclusive results

TA2: Design

- Elements of experimental design:
 - ▷ population
 - sampling technique and rationale
 - ▷ treatment (or intervention)
 - ▷ bias and sample size
- In Pfleeger/Hatton study:
 - ▷ population: 1 product
 - observational case study
 - ▷ all fault data used
 - ▷ D1-D11 not formally addressed

TA3: Data Collection

- Data collection: common guidelines.
 - ▷ DC1: define all measures fully.
 - ▷ DC2: properly treat subjective ones
 - ▷ DC3: accuracy/completeness of DC
 - ▷ DC4: resp. rate & representativeness
 - ▷ DC5: drop-outs? (for experiments)
 - ▷ DC6: other performance measures also
- In Pfleeger/Hatton:
 - ▷ DC1: measure definition
 - fault reports from in-house testing
 - in connection with data analysis
 (particularly: understanding data)
 - ▷ DC2–DC6 irrelevant.

- Analysis guidelines:
 - A1: careful with multiple testing
 ("torture/fishing" the same set of data?)
 - A2: consider using blind analysis (reduce subjective tendencies)
 - ▷ A3: perform sensitivity analysis
 - ▷ A4: match data with test
 - ▷ A5: verify the results
- In Pfleeger/Hatton:
 - ▷ in connection with analysis steps
 - ▷ 5 steps (details later)
 - ▷ fairly simple statistics
 - > also include result presentation, interpretation and conclusions.

- Step 1: Understand the data
 - DC1: define all measures fully (previous guideline topic area)
 - ▷ fault reports are actually failures
 - ▷ severity 1, 2, 3: all failure related
 - ▷ around 3000 fault reports
 - ▷ 1990 to June 1992 (delivery)
 - but little root cause analysis
- Step 2: Looking for diff. in #changes
 - ▷ module changes from fault reports
 - ▷ quantitative questions regarding:
 - FM quantitatively affect code quality?
 - Was one FM superior to another?
 - ▷ results presented in Tables 1 and 2
 - > related interpretation/discussions
 - ▷ conclusion: no sig. differences

- Step 3: Look for trends
 - one question (no sig. diff. in avg) leads to another (over time diff.?)
 - ▷ results in Fig. 2
 - ▷ related discussions:
 - onset of testing in qt.4
 - possible size/complexity diff.
 - comment: uncontrolled factors
- Step 4: Conduct a code audit
 - ▷ try to explain Step 3/Fig. 2 above
 - potential faults remaining per module
 - ▷ complexity analysis
 - ▷ results: Fig. 3, high quality
 - simple design, loose coupling
 - ▷ but not attributed to design methods

- Step 5: Examine the results of unit testing
 - ▷ easy to test (and early)?
 - ▷ overall faults distribution:
 - insp.: 340, UT: 725, ST/AT: 2200
 - different from prev. studies
 - ▷ UT results: Table 3
 - formal lower than informal (UT pb.)
 - implications: formal better/cleanroom?
 - \triangleright postdelivery \Rightarrow next question
- Step 6: Evaluate postdelivery changes
 - ▷ results: Table 4
 - ▷ formal better than informal
 - ▷ indistinguishable within different FM
 - ▷ comparison: Tables 5 and 6
 - ▷ direct & indirect effect of FM:
 - conformance to req. (direct)
 - highly testable system (indirect)

TA5: Result Presentation

- Presentation guidelines:
 - ▷ P1: describe/ref. for stat. procedures
 - ▷ P2: statistical package used
 - \triangleright P3: enough details (sig. level etc.)
 - ▷ P4: raw data whenever possible
 - ▷ P5: appropriate descriptive statistics
 - ▷ P6: make appropriate use of graphics
- In Pfleeger/Hatton:
 - ▷ simple statistics: no need to explain
 - ▷ most of Px's irrelevant
 - ▷ in connection with data analysis
 - ▷ good use of tables/graphics

TA6: Result Interpretation

- Interpretation guidelines:
 - I1: describe inferential statistics or predictive models
 - ▷ I2: stat. sig. \neq practical importance
 - ▷ I3: define the type of study
 - ▷ I4: specify study limitations
- In Pfleeger/Hatton:
 - > simple statistics/interpretation
 - ▷ most of Ix's irrelevant
 - ▷ in connection with data analysis
 - ▷ summarized in lessons learned section

TA6: Result Interpretation

- Lessons about formal methods:
 - ▷ pre-delivery similar
 - ▷ UT and post-delivery: FM better
 - ▷ high-quality audit profile:
 - simple, independent components
 - ▷ FM in concert with other SE initiatives
- Lessons about empirical investigation:
 - data availability issue:
 expr./size data, other projects, etc.
 - ▷ data consistency: fault vs failure
 - ▷ separate pre-/post-delivery data
 - other limitations

TA6: Result Interpretation

- Overall: inconclusive, but some indications
- Recommendation to practitioners:
 - b data defn/coll in planning to evaluate task effectiveness and product quality
 - ▷ trend and relationship identification
 - Be skeptical: quantitative evidence?
- Comments by Tian:
 - ▷ focus: data analysis
 - ▷ simple statistics/interpretation
 - ▷ good ESE example
 - ▷ good ESE guideline test/example
 - relate to hw#2&3 analysis/critique