Empirical Software Engineering CSE 8340 — Spring 2014

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8340.14s

Module IIb: TBM in Risk Ident.

- Telecom Case Study
- TBM and Applications
- Results and Discussions

Overview

- Project background:
 - \triangleright Reliability and QA:
 - SMU research under NSF&THECB grants
 1998–: Tian, Nguyen, and others.
 - Industrial support: Nortel Networks Frame, Allen, Appan, and others.
- Planned activities:
 - Defect analysis: TBDMs
 (Tree-based defect models)
 - Reliability improvement: TBRMs (Tree-based reliability models)
 - ▷ Other: UMMs, testing, HT, etc.
- JSS paper by Tian/Nguyen/Allen/Appan.

Overview: Context

- Objectives of study: Understanding problem prone modules for quality management and improvement.
- Objects of study:
 - Large telecommunication software
 - Nortel Networks products: NT-X
 - Developed/released/used recently
 - ▷ 5 different releases
 - ▷ Latest finished around 2000/2001
- Development environment:
 - ▷ Waterfall-like process
 - Change/incremental development
 - Project monitoring through
 various measurements and tools
 (e.g., Datrix/EMERALD/COMET)

Overview: Approach (Design)

- General approach to the study:
 - ▷ Various measurement data.
 - Identify problem prone modules
 - Characterize problem prone modules
 - ▷ Conclusions based on above analyses.
- Classification: observational
- 5 different releases
 - Consistency among releases
 - assessment and understanding
 - ▷ Guidance for new release
 - prediction and control

Risk Identification: Why?

- Risk and 80:20 rule
 - Risk: (high) probability of undesirable situations or consequences
 - ▷ 80:20 rule: 80% of problems traceable to 20% of components
 - Need risk identification
- Problem-prone modules
 - Likely to contain substantially more internal or development defects.
 - ▷ (Fault-prone: in-field failures)
 - Identification of the modules
 - Corrective/remedial actions
- Identify problem prone modules
 - ▷ Data: past defect and other metrics.
 - ▷ Technique: risk identification.
 - ▷ Followup: Characterization.

Risk Identification: How?

- Techniques used in Nortel Networks:
 - EMERALD: mainly multiple regression and logistic analysis, with limited use of neural networks.
 - COMET: principal component analysis
 (PCA) and discriminant analysis.
- New techniques:
 - ▷ Tree-based modeling with S-PLUS
 - ▷ CART with SAS
- Primary technique here: TBM.
 - ▷ generic comparison: Tian SQP paper.
 - ▷ specifics: later

Product and Defect Metrics

- Defect metrics:
 - ▷ DF: defect fixes
 - ▷ Applied in response to testing failures.
 - ▷ DF vs. failure/fault counts:
 - DF captures propagation information.
 - DF is identified with specific modules.
 - Available in project data depository
 - ▷ Data transformed to percentages.

$$DF = \frac{DF_{raw}}{DF_{max}} \times 100\%$$

- Product metrics:
 - ▷ From EMERALD, a Nortel tool/product
 - Underlying analyzer for procedure-level metrics
 - \triangleright Module level metrics \sim DF

Product Metrics: Details

- 53 raw product metrics:
 - ⊳ volume,
 - testability, decision complexity, dead code, independent path, structuredness,
 - ▷ readability,
 - ▷ section dependability,
 - ▷ software science.
- 6 synthetic product metrics:
 - ▷ **OurRange**: # metrics \notin acceptable range
 - a rough indicator of module quality
 - ▷ Level (or procedure type)

Risk Identification: EMERALD

- Techniques used:
 - ▷ Mixture of old and new.
 - ▷ Multiple regression & logistic analysis.
 - ▷ Neural network etc.
- EMERALD output:
 - ▷ OpRisk: likelihood of field defect.
 - ▷ Values: "green", "R", ..., "RRRRRR".
 - ▷ Other output also possible.
 - ▷ But not DF for this model
 - Identifying but not characterizing
 - ▷ Try other models

TBDMs: Why?

- Risk identification:
 - ▷ Assumption (in traditional techniques):
 - linear relation
 - uniformly valid result
 - ▷ Reality of defect distribution:
 - isolated pocket
 - different types of metrics
 - correlation/dependency in metrics
 - qualitative differences
 - ▷ Need new risk id. techniques.
- Risk characterization:
 - ▷ Identified, then what?
 - ▷ Result interpretation.
 - ▷ Remedial/corrective actions.
 - ▷ Extrapolation to new product/release.
 - ▷ TBDMs appropriate.

TBM & TBDMs: Ideas

- TBDMs: tree-based defect models using tree-based modeling (TBM) technique
- Decision trees:
 - > multiple/multi-stage decisions
 - ▷ may be context-sensitive
 - ▷ natural to the decision process
 - ▷ applications in many problems
 - decision making & problem solving
 - decision analysis/optimization
- Tree-based models:
 - ▷ reverse process of decision trees
 - \triangleright data \Rightarrow tree
 - ▷ idea of decision extraction
 - ▷ generalization of "decision"

TBM: Types and Applications

- Key "selling" points:
 - ▷ intuitiveness and interpretation
 - compare to PCA, NN
 - ▷ quantitative & qualitative info.
 - ▷ hierarchy/importance/organization
- Past applications:
 - ▷ social sciences
 - Selby&Porter: Amadeus project
 - \triangleright Tian et al:
 - NASA/SEL work (area IV)
 - IBM product defects: with Troster
 - IBM TBRM: 8317 coverage
 - SMU: UMM/testing, Nortel work

TBM: Technique

- Technique: tree-based modeling
 - ▷ Tree: nodes=data-set, edges=decision.
 - ▷ Data attributes:
 - -1 response & n predictor variables.
 - ▷ Construction: recursive partitioning.
 - ▷ Usage: relating response to predictors

 $-Y = Tree(X_1, \ldots, X_n)$

- understanding vs. predicting
- identification and characterization
- ▷ Works for mixed-types of data.
- ▷ Tree growing and pruning.
- Algorithm: Fig.1
 - ▷ regression tree and example
 - classification tree: modify Step 3

TBDMs: Result for NT-X

- Overall result: Fig. 2
 - ▷ Similar results for other releases
 - General understanding: simplicity/pruning
- How to read each node?
 - DF and node size summary
- Split conditions
 - Distinguishing characteristics
 - ▷ Root to leaf: order of importance
 - ▷ Metrics selected out of 59 by algorithm:
 - Halstead program length (HalLen)
 - # basic utility routines (Level1)
 - # include files (FilIncNbr)
 - comments volume average (ComStrAvg)
 - Halstead level (HalLvl)

TBDMs: Result for NT-X

- Identifying problem prone modules
 - ▷ Identified leaf nodes (Table 1)
 - ▷ Comparison to other nodes (Fig. 2)
 - ▷ Isolated pockets: IIrl, rr (rrl + rrr)
 - ▷ Groups vs. individual identification
- Characterizing problem prone modules
 - Split conditions as characterization
 - Symptoms of problems
 - \triangleright Further analysis \Rightarrow systematic problems
 - ▷ Corrective/remedial actions
 - Future process/product improvement

Other **TBDM** Results

- TBDM performed:
 - \triangleright DF \sim metrics (previous)
 - \triangleright DF \sim OpRisk
 - \triangleright DF \sim all
- EMERALD result validation
 - \triangleright TBDM set1: tot.fix $\sim OpRisk$
 - \triangleright TBDM set2: tot.fix \sim all
 - ▷ Consistent pattern
 - ▷ Reasonable predictions, but...
 - not much constructive info.

TBDMs: NT-X vs. IBM LS and NS

- IBM products for comparison:
 - ▷ LS and NS: A legacy and a new system
 - ▷ Large s/w systems: 995, 1302 modules
 - \triangleright Metrics: DF + (11, 15) other
 - design (6), size (2), complexity (5, 3)
 - change (2 for LS)
- Results for IBM LS and NS:
 - ▷ LS: change, size, data complexity
 - ▷ NS: design and control complexity
 - ▷ Problem-prone modules: Table 2
- Comparison: NT-X similar to IBM LS
 - Common traits of legacy systems
 - ▷ Implications: similar initiatives

Recommendation: Integrated Strategy

- Main considerations:
 - Existing tools and infrastructure
 - Past experience and domain knowledge
 - Applicability and effectiveness of new risk identification techniques
 - ▷ Tailoring for your environment
- Specific for Nortel Networks:
 - ▷ Measurement: existing tools/databases
 - ▷ Identification: EMERALD
 - ▷ Characterization: TBDMs (this paper)
 - Cross validation: both
 - ▷ Follow-up: causal analysis needed
 - but TBDMs can help/guide

Recommendation: Lifecycle Integration

- Main considerations:
 - ▷ Process and data availability
 - ▷ Experience/infrastructure/tools/etc.
 - ▷ Different focus, but similar techniques?
 - ▷ Tailoring for your process/product
- Lifecycle integration:
 - Analysis of inspection/other data
 - Analysis and feedback loop
 - ▷ Our current/future research projects
 - ▷ QA and improvement focus:
 - defect prevention
 - defect detection and removal
 - defect containment

Conclusions and Perspectives

- Problems addressed:
 - ▷ Large telecommunication systems.
 - Multiple releases, diverse components
 - ▷ Uneven DF distribution (80:20 rule)
 - Need risk identification and characterization for corrective/remedial actions
- Conclusions: an effective strategy
 - Existing measurement tools/infrastructure
 - EMERALD for risk identification
 - ▷ TBDMs for risk characterization
 - ▷ TBDMs guided follow-up actions
- Future work:
 - ▷ Lifecycle approach to quality
 - \triangleright Progression: qualitative \Rightarrow quantitative