Empirical Software Engineering CSE 8340 — Spring 2014

Prof. Jeff Tian, tian@lyle.smu.edu CSE, SMU, Dallas, TX 75275 (214) 768-2861; Fax: (214) 768-3085 www.lyle.smu.edu/~tian/class/8340.14s

Module IIc: Other Risk Id Techniques

- PCA/DA and Application in Telecom
- NN and Applications
- OSR and Application in NASA/SEL

PCA & DA Study: Overview

- PCA: principal component analysis
 - ▷ idea of linear transformation
 - ▷ produce uncorrelated i.v.
 - ▷ reduce dimensionality
- DA: discriminant analysis
 - ▷ discriminant function
 - ▷ combine with other techniques
- Application: BNR/Nortel Telecom
- IEEE Software 1/1996 Paper by Khoshgoftaar/Allen/Kalaichelvan/Goel

PCA & DA Study: Context/Design

- Goal/Motivation:
 - ▷ risk id as a classification problem
 - ▷ DA, TBM, NN, Pattern Recognition
 - b technique used: DA in connection with PCA and logistic analysis
- Experimental context:
 - ▷ system profile: Table 1.
 - ▷ module classification:
 - new, changed, unchanged
 - effectively use logistic regression
- Experimental design:
 - ▷ observational (post-mortem analysis)
 - ▷ training: 2/3; testing 1/3; randomly

PCA & DA Study: Data

- d.v.: faults
 - ▷ between coding and operational phases
 - ▷ fault distribution: Table 2
 - \triangleright risk: fault-prone or faults \geq 5
- i.v.: design metrics
 - ▷ early quality prediction
 - ▷ modules consists of files mean = 12, median = 4
 - design metrics defined on call graph and control flow graph
 - ▷ 9 specific metrics: Table 3

- Problem: classification into fault-prune and no-fault-prune via discriminant analysis
- Analysis procedure/techniques:
 - ▷ encode categorical variable
 - ▷ standardization
 - PCA to make model stable
 - ▷ model selection
 - discriminant analysis
- Encode categorical variable (covariates)
 - ▷ encoding: change (see earlier)
 - ▷ logistic regression idea
- standardization: transform data to make mean = 0, and std.dev. = 1.

• PCA: why?

- ▷ correlated i.v.'s leads to unstable models
- ▷ extreme case:
 - linearly dependent \Rightarrow singularity
- ▷ linear transformation (PCA) \Rightarrow uncorrelated PCs (or domain metrics)
- PCA: how?
 - \triangleright covariance matrix: Σ
 - ▷ solve $|\Sigma \Lambda| = 0$ to obtain eigenvalues λ_j along the diagonal for the diagonal matrix Λ
 - $\triangleright \lambda_j$'s in decreasing value
 - ▷ decomposition: $\Sigma = P^T \Lambda P$
 - ▷ P: matrix of eigenvectors (transformation used)

- Obtaining PCA results:
 - \triangleright transformation: D = ZT, where
 - Z is the standardized metrics
 - T is the transformation matrix
 - $\triangleright \Lambda, P, T$ calculated by various statistical packages/tools
- PCA result interpretation:
 - \triangleright eigenvalues \approx explained variance
 - first few domain metrics (PCs) explain most of the variance (typically 3 to 5)

- Using PCA results:
 - ▷ uncorrelated PCs
 - \Rightarrow good/stable linear models
 - ▷ only a few PCs are necessary
 - establish significance level
- Models selection:
 - ▷ choose domain metrics
 - ▷ also choose covariates
 - ▷ judge by the discriminant analysis model
 - > algorithm in Khoshgoftaar paper

- Why DA: classification.
- DA: how?
 - ▷ define discriminant function
 - \triangleright classify into G_1 and G_2
 - $-G_1$: not fault-prune
 - $-G_2$: fault-prune
 - ▷ definitions: (4) through (8)
 - other/similar definitions possible
- DA evaluation:
 - ▷ fit: misclassification rate
 - ▷ prediction: from training to test sets
 - ▷ misclassification types:
 - I: G_1 to G_2 false alarm
 - II: G_2 to G_1 missed fault-prune
 - prefer II to be lower than I

PCA & DA Study: Result

• PCA results: Table 4

only 3 PCs (domain metrics) needed
powerful tool to interpret data

• DA/PC model selection

 \triangleright model₁: PCs only, select all 3 PCs

- \triangleright *model*₂: all 3 PCs and 2 covariates
- DA results:
 - ▷ Tables 5, 6, 7, 8
 - ▷ DA fit: no significant differences
 - ▷ DA prediction: important differences
 - ▷ reuse an important factor

PCA & DA Study: Conclusions

- Positive results (Authors):
 - DA for risk identification
 (identifying fault-prune modules)
 - > design metrics useful indicators
 - reuse information valuable
 - predictive quality more important
- Other observations (Tian):
 - ▷ much needed before DA
 - ▷ data treatment/transformation effect
 - > much statistics knowledge
 - ▷ complexity and interpretation
 - ▷ type I vs II misclassification

NN Study: Overview

- NN ideas and algorithms:
 - ▷ single neuron: computation unit
 - ▷ connection: layered network
 - ▷ algorithm: backward propagation
- NN applications:
 - use in command and control communication system (CCCS)
 - ▷ use in medical imaging system (MIS)
 - comparison baseline: multiple regression applied to the above two systems
- 1995 Paper by Khoshgoftaar, Pandya, and Lanning, ASE

NN Study: Context/Design

- Experimental context:
 - CCCS: large military software, in Ada (not much information given)
 - ▷ MIS: commercial software
 - 4500 routines, 400 KLOC
 - in Pascal, Fortran, assembler, and PL/M
 - 5 development, 3 year deployment
- Experimental design:
 - observational (post-mortem analysis)
 - ▷ training: 2/3; testing 1/3; randomly

NN Study: Data

- CCCS data:
 - b d.v.: faults from system integration and test, and first year of deployment
 - i.v.: 8 selected out of 14
 (mostly D/C complexity and size)
 - ▷ 282 data points (2/3 vs 1/3)
- MIS data:
 - b d.v.: changes due to faults discovered during system testing and maintenance.
 - ▷ i.v.: 11 similar metrics
 - ▷ 339 modules (less than 1/10) used (again, 2/3 training; 1/3 testing)

NN Study: Analysis

- NN ideas and organization:
 - neuron: basic computation unit
 - \triangleright NN: multiple layers
 - ▷ each layer: multiple neurons
 - ▷ input from previous layer
 - ▷ output to next layer
- Computation at a neuron: 2 stages
 - \triangleright weighted sum of input: $h = \sum x_i$

(may include constant)

- \triangleright then activation function y = q(h)
 - threshold, piecewise-linear,

 - Gaussian, sigmoid (below), etc. in Khoshgoftaar: $y = \frac{1}{1 + e^{-h/T}}$
- ▷ illustration in Tian or Khoshgoftaar

NN Study: Analysis

- Overall computation:
 - ▷ layers of neurons
 - ▷ input layer: raw data feed
 - \triangleright other layers: computation at n neurons
 - objective: minimize prediction error at the output layer
- algorithm: backward propagation
 - Fig. 4 in Tian SQP 2000
 (actually algorithm ideas, not exact)
 - ▷ trace through steps
 - ▷ error: deviance (sum of error sqr)
 - ▷ specific adjustments: Khoshgoftaar p.147 (learning and momentum rates: η , α)

NN Study: Result

- Model performance measure:
 - ▷ ARE: average relative error

$$ARE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{y_i} \right|$$

- \triangleright y_i transformed by adding 1 to raw data
- ▷ discussion in Khoshgoftaar p.143
- ▷ other measure: rse (rel.std.err)
- NN model produced:
 - ▷ input data scaled to [0, 1]
 - \triangleright initial weights: random in [-1, 1]
 - \triangleright learning/momentum: $\eta = 1.5, \ \alpha = 0.7$
 - ▷ 1 hidden layer best, from 1, 2, 3 tried
 - ▷ 16 neurons for CCCS and 18 for MIS

NN Study: Summary

- NN result summary:
 - ⊳ Table 1
 - comparison to regression model
 - (RM details given in Tables 2 & 3)
 - ▷ NN is clearly superior
- Other comments (Tian):
 - ▷ good example of NN technique
 - not really focus on risk identification (estimating # faults)
 - ▷ but in other work by authors
 - Khoshgoftaar/Szabo (ref. in Tian/SQP):
 PCA & NN for risk id.

OSR Study: Overview

- OSR: optimal set reduction
 - pattern matching ideas
 - OSR technique: Briand et al., 1992
 (OSR for effort estimation)
 - ▷ with application: 1993 Paper by
 Briand/Basili/Hetmanski, TSE 19(11)
- OSR applications:
 - ▷ NASA/SEL: fault risk
 - ▷ baseline for comparison:
 - classification trees
 - logistic analysis
 - (with or without PCA for LA)
 - b demonstrate superiority

OSR Study: Context/Design

- Experimental context:
 - ▷ NASA/SEL software in Ada
 - ▷ 146 components and 260 KLOC
- Experimental design:
 - ▷ high risk: procedure/function with error
 - particularly, reading/writing to var/struct
 - ▷ otherwise, low risk
 - equal number of low and high risk components to build unbiased model
 - ▷ observational (post-mortem analysis)

OSR Study: Data

- Metrics data derived from hypotheses about the software design process
- Data categories (via hypotheses):
 - ▷ context coupling
 - ▷ parameterization
 - ▷ visibility control
 - ⊳ reuse
 - ▷ component size
 - ▷ structural complexity
- Obtaining the data
 - ▷ ASAP static-analysis program
 - ▷ UNIX utilities and SAS program
 - ▷ 15 metrics listed in Appendix A

OSR Study: Analysis

- OSR ideas and organization:
 - ▷ pattern extraction
 - ▷ algorithm sketch: Fig.9 in Tian/SQP
 - detailed algorithm: Appendix B
 - other detailed throughout paper
 - organization/modeling results:
 - no longer a tree, see example
 - general subsets, may overlap
- Similarities to TBM
 - \triangleright pattern \sim partition
 - \triangleright entropy \sim deviance
 - ▷ reduction of the above

OSR Study: Result

- Model performance measure: accuracy
 - ▷ completeness:
 - % high risk modules identified
 - ▷ correctness:
 - % high risk modules correctly identified
 - ▷ performance comparison: Table 1
- OSR conclusions:
 - ▷ accuracy: better than alternatives
 - LA tedious & less interpretable
 - TBM simplistic
 - ▷ interpretable structure (similar to TBM)
- Comments: fair comparison?