
Empirical Software Engineering CSE 8340 (IIc) 1

Empirical Software Engineering

CSE 8340 — Spring 2014

Prof. Jeff Tian, tian@lyle.smu.edu
CSE, SMU, Dallas, TX 75275

(214) 768-2861; Fax: (214) 768-3085
www.lyle.smu.edu/∼tian/class/8340.14s

Module IIc: Other Risk Id Techniques

• PCA/DA and Application in Telecom

• NN and Applications

• OSR and Application in NASA/SEL

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 2

PCA & DA Study: Overview

• PCA: principal component analysis

. idea of linear transformation

. produce uncorrelated i.v.

. reduce dimensionality

• DA: discriminant analysis

. discriminant function

. combine with other techniques

• Application: BNR/Nortel Telecom

• IEEE Software 1/1996 Paper by

Khoshgoftaar/Allen/Kalaichelvan/Goel

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 3

PCA & DA Study: Context/Design

• Goal/Motivation:

. risk id as a classification problem

. DA, TBM, NN, Pattern Recognition

. technique used: DA in connection with

PCA and logistic analysis

• Experimental context:

. system profile: Table 1.

. module classification:

– new, changed, unchanged

– effectively use logistic regression

• Experimental design:

. observational (post-mortem analysis)

. training: 2/3; testing 1/3; randomly

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 4

PCA & DA Study: Data

• d.v.: faults

. between coding and operational phases

. fault distribution: Table 2

. risk: fault-prone or faults ≥ 5

• i.v.: design metrics

. early quality prediction

. modules consists of files

mean = 12, median = 4

. design metrics defined on call graph and

control flow graph

. 9 specific metrics: Table 3

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 5

PCA & DA Study: Analysis

• Problem: classification into fault-prune and

no-fault-prune via discriminant analysis

• Analysis procedure/techniques:

. encode categorical variable

. standardization

. PCA to make model stable

. model selection

. discriminant analysis

• Encode categorical variable (covariates)

. encoding: change (see earlier)

. logistic regression idea

• standardization: transform data to make

mean = 0, and std.dev. = 1.

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 6

PCA & DA Study: Analysis

• PCA: why?

. correlated i.v.’s leads to unstable models

. extreme case:

linearly dependent ⇒ singularity

. linear transformation (PCA) ⇒

uncorrelated PCs (or domain metrics)

• PCA: how?

. covariance matrix: Σ

. solve |Σ − Λ| = 0 to obtain eigenvalues

λj along the diagonal for the diagonal

matrix Λ

. λj’s in decreasing value

. decomposition: Σ = P TΛP

. P : matrix of eigenvectors

(transformation used)

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 7

PCA & DA Study: Analysis

• Obtaining PCA results:

. transformation: D = ZT , where

– Z is the standardized metrics

– T is the transformation matrix

. Λ, P, T calculated by various statistical

packages/tools

• PCA result interpretation:

. eigenvalues ≈ explained variance

. first few domain metrics (PCs) explain

most of the variance

(typically 3 to 5)

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 8

PCA & DA Study: Analysis

• Using PCA results:

. uncorrelated PCs

⇒ good/stable linear models

. only a few PCs are necessary

. establish significance level

• Models selection:

. choose domain metrics

. also choose covariates

. judge by the discriminant analysis model

. algorithm in Khoshgoftaar paper

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc) 9

PCA & DA Study: Analysis

• Why DA: classification.

• DA: how?

. define discriminant function

. classify into G1 and G2

– G1: not fault-prune

– G2: fault-prune

. definitions: (4) through (8)

. other/similar definitions possible

• DA evaluation:

. fit: misclassification rate

. prediction: from training to test sets

. misclassification types:

– I: G1 to G2 false alarm

– II: G2 to G1 missed fault-prune

prefer II to be lower than I

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)10

PCA & DA Study: Result

• PCA results: Table 4

. only 3 PCs (domain metrics) needed

. powerful tool to interpret data

• DA/PC model selection

. model1: PCs only, select all 3 PCs

. model2: all 3 PCs and 2 covariates

• DA results:

. Tables 5, 6, 7, 8

. DA fit: no significant differences

. DA prediction: important differences

. reuse an important factor

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)11

PCA & DA Study: Conclusions

• Positive results (Authors):

. DA for risk identification

(identifying fault-prune modules)

. design metrics useful indicators

. reuse information valuable

. predictive quality more important

• Other observations (Tian):

. much needed before DA

. data treatment/transformation effect

. much statistics knowledge

. complexity and interpretation

. type I vs II misclassification

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)12

NN Study: Overview

• NN ideas and algorithms:

. single neuron: computation unit

. connection: layered network

. algorithm: backward propagation

• NN applications:

. use in command and control communi-

cation system (CCCS)

. use in medical imaging system (MIS)

. comparison baseline: multiple regression

applied to the above two systems

• 1995 Paper by Khoshgoftaar, Pandya, and

Lanning, ASE

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)13

NN Study: Context/Design

• Experimental context:

. CCCS: large military software, in Ada

(not much information given)

. MIS: commercial software

– 4500 routines, 400 KLOC

– in Pascal, Fortran, assembler, and PL/M

– 5 development, 3 year deployment

• Experimental design:

. observational (post-mortem analysis)

. training: 2/3; testing 1/3; randomly

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)14

NN Study: Data

• CCCS data:

. d.v.: faults from system integration and

test, and first year of deployment

. i.v.: 8 selected out of 14

(mostly D/C complexity and size)

. 282 data points (2/3 vs 1/3)

• MIS data:

. d.v.: changes due to faults discovered

during system testing and maintenance.

. i.v.: 11 similar metrics

. 339 modules (less than 1/10) used

(again, 2/3 training; 1/3 testing)

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)15

NN Study: Analysis

• NN ideas and organization:

. neuron: basic computation unit

. NN: multiple layers

. each layer: multiple neurons

. input from previous layer

. output to next layer

• Computation at a neuron: 2 stages

. weighted sum of input: h =
n

∑

1

xi

(may include constant)

. then activation function y = g(h)

– threshold, piecewise-linear,

– Gaussian, sigmoid (below), etc.

– in Khoshgoftaar: y =
1

1 + e−h/T

. illustration in Tian or Khoshgoftaar

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)16

NN Study: Analysis

• Overall computation:

. layers of neurons

. input layer: raw data feed

. other layers: computation at n neurons

. objective: minimize prediction error at

the output layer

• algorithm: backward propagation

. Fig. 4 in Tian SQP 2000

(actually algorithm ideas, not exact)

. trace through steps

. error: deviance (sum of error sqr)

. specific adjustments: Khoshgoftaar p.147

(learning and momentum rates: η, α)

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)17

NN Study: Result

• Model performance measure:

. ARE: average relative error

ARE =
1

N

N
∑

i=1

∣

∣

∣

∣

∣

ei

yi

∣

∣

∣

∣

∣

. yi transformed by adding 1 to raw data

. discussion in Khoshgoftaar p.143

. other measure: rse (rel.std.err)

• NN model produced:

. input data scaled to [0, 1]

. initial weights: random in [−1, 1]

. learning/momentum: η = 1.5, α = 0.7

. 1 hidden layer best, from 1, 2, 3 tried

. 16 neurons for CCCS and 18 for MIS

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)18

NN Study: Summary

• NN result summary:

. Table 1

. comparison to regression model

(RM details given in Tables 2 & 3)

. NN is clearly superior

• Other comments (Tian):

. good example of NN technique

. not really focus on risk identification

(estimating # faults)

. but in other work by authors

. Khoshgoftaar/Szabo (ref. in Tian/SQP):

PCA & NN for risk id.

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)19

OSR Study: Overview

• OSR: optimal set reduction

. pattern matching ideas

. OSR technique: Briand et al., 1992

(OSR for effort estimation)

. with application: 1993 Paper by

Briand/Basili/Hetmanski, TSE 19(11)

• OSR applications:

. NASA/SEL: fault risk

. baseline for comparison:

– classification trees

– logistic analysis

– (with or without PCA for LA)

. demonstrate superiority

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)20

OSR Study: Context/Design

• Experimental context:

. NASA/SEL software in Ada

. 146 components and 260 KLOC

• Experimental design:

. high risk: procedure/function with error

– particularly, reading/writing to var/struct

. otherwise, low risk

. equal number of low and high risk com-

ponents to build unbiased model

. observational (post-mortem analysis)

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)21

OSR Study: Data

• Metrics data derived from hypotheses about

the software design process

• Data categories (via hypotheses):

. context coupling

. parameterization

. visibility control

. reuse

. component size

. structural complexity

• Obtaining the data

. ASAP static-analysis program

. UNIX utilities and SAS program

. 15 metrics listed in Appendix A

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)22

OSR Study: Analysis

• OSR ideas and organization:

. pattern extraction

. algorithm sketch: Fig.9 in Tian/SQP

. detailed algorithm: Appendix B

. other detailed throughout paper

. organization/modeling results:

– no longer a tree, see example

– general subsets, may overlap

• Similarities to TBM

. pattern ∼ partition

. entropy ∼ deviance

. reduction of the above

Prof. Jeff Tian Spring 2014

Empirical Software Engineering CSE 8340 (IIc)23

OSR Study: Result

• Model performance measure: accuracy

. completeness:

% high risk modules identified

. correctness:

% high risk modules correctly identified

. performance comparison: Table 1

• OSR conclusions:

. accuracy: better than alternatives

– LA tedious & less interpretable

– TBM simplistic

. interpretable structure (similar to TBM)

• Comments: fair comparison?

Prof. Jeff Tian Spring 2014

