Risk-Based Quality Improvement
for Embedded Systems

Jeff Tian (tian@engr.smu.edu)
Southern Methodist University
Dallas, Texas, USA

Contents

• Quality, Reliability, and Risk

• Successes in Risk Id./Management

• Implications for Embedded Systems
Quality, Reliability, and Risk

Observation: Highly uneven distribution of cost, usage, quality, defect, performance, etc.

- “80:20” rule or Pareto’s principle.
- Units: component, owner, feature, etc.
- Focus: high-risk/high-leverage units.
- Measurement distribution example above.
Risk Identification and Management

- Risk identification:
 - Qualitative: Causal analysis, etc.
 - Quantitative:
 - Old: correlation, regression, etc.
 - New: PCA, DA, TBM, etc.
 - AI/learning: NN, OSR, etc.

- Risk management:
 - Current project: Remedial actions
 - Similar projects: Corrective actions
 - Future projects: Preventive actions
Risk Focus: Important Usage

- Focusing on functions/modules with:
 - High usage frequency and importance
 - Non-uniform attention/effort in
 - testing \Rightarrow UBST
 - other focused quality assurance

- Usage-based statistical testing (UBST)
 - Capture user/usage information
 - Usage model $=$ Operational profile (OP)
 - OP-guided testing $=$ UBST
 - SRMs: Testing results \Rightarrow reliability
 - New applications in web, ES, etc.

Risk Focus: Defect-Prediction

- Analyzing defect-metrics relations
 - Correlation/regression (example above)
 - Impact: Behavior modification
Risk Focus: Defect-Reduction

- Early successes ⇒ Behavior modification
 - Validation ⇒ hypothesis testing (HT)
 - Need more sophisticated methods

- HT in Koru and Tian, IEEE-TSE 8/2005:
 - High-defect (HD) modules vs. high-complexity (HC) modules
 - HD and HC statistically different
 - Complexity ranking of HD: 60 ~ 80%
Risk Focus: Defect-Reduction

- TBDM for defect↓ and quality↑:
 - Tian and Troster, JSS 12/1998
 - Tian/Nguyen/Allen/Appan, JSS 9/2001
Risk Focus: Reliability Growth

- Focused/accelerated reliability improvement via tree-based reliability models (TBRMs)
 - Measure: Purification level $\rho = \frac{\lambda_0 - \lambda_T}{\lambda_0}$
 - A/B/C: $0.35 \sim 0.72$ vs. D: $0.94 \sim 0.99$
Summary and Perspectives

• Existing work and successes:
 ▶ Size/complexity $\uparrow \Rightarrow$ selective effort
 ▶ 80:20 \Rightarrow risk focus
 ▶ Risk identification/management:
 – usage-based statistical testing
 – defect-prone module characterization
 – risk-based reliability improvement

• Impact on embedded systems:
 ▶ Similar set of problems
 ▶ Interaction: OP/UBST applicable
 ▶ Other risk identification/management
References – To Probe Further

