Software Reliability
— An Integrated Approach

Dr. Jeff Tian (tian@seas.smu.edu)
Southern Methodist University
Dallas, Texas, USA

Contents

• Software Measurement and Analysis

• Software Testing and Reliability

• An Integrated Approach

• Conclusions and Perspectives

Nov. 15, 2000 Jeff Tian, CSE/SMU
Overview: Project Background

• Background information:
 ▶ S/w measurement at U. Maryland & NASA/SEL (1989+)
 ▶ S/w reliability engineering at IBM (1992+)
 ▶ Leading to current research at SMU (1995+)

• Ongoing Project at SMU:
 ▶ Reliability: early measurement/improvement
 – an integrated lifecycle approach
 – NSF/CAREER award CCR-9733588
 ▶ Telecom. S/w Testing & Reliability
 – THECB/ATP award 003613-0030-1999
 ▶ Collaboration with IBM and Nortel
An Integrated Approach

- Software measurement and analysis
 - Early: coding and some design
 - But internal focus

- Software reliability engineering
 - Customer quality perspective
 - But late in testing
 - although my TBRMs push it forward

- Integration:
 - Extended development phases
 - Early feedback and improvement
 - Usage of multiple info sources
Software Measurement and Analysis

- Traditional measurements:
 - Direct measurement:
 - quality and defects
 - cost, schedule, effort etc.
 - objective to be controlled/optimized
 - Indirect product measurement:
 - size and volume
 - complexity: control/data/presentation
 - change, dependency, etc.
 - at product/module/component levels
 - used to affect outcome above
 - Other measurements: PPP, env., etc.

- Traditional analyses:
 - Correlation analysis.
 - Multiple regression.
Software Measurement and Analysis

• Issue: Measure evaluation/selection
 ▶ Weyuker’s desirable properties
 ▶ Tian-Zelkowitz axioms & classification
 ▶ Selection as constrained optimization
 ▶ Use with CTA for effort prediction
 ▶ Application to NASA/SEL

• Issue: Risk identification
 ▶ Risk: (high) probability of undesirable situations or consequences
 ▶ 80:20 rule: 80% of problems traceable to 20% of components
 ▶ Need to identify high risk modules
 ▶ Characterization of these modules
 ▶ Lead to corrective/remedial actions
Risk Identification: How?

- Traditional techniques:
 - Correlation analysis.
 - Multiple regression.
 - Examples and problems.

- New techniques:
 - Principal component analysis (PCA) and discriminant analysis
 - Neural networks
 - Learning algorithms
 - Tree-based modeling
 - Pattern matching approaches
 - Examples and comparison

TBDMs: Why?

- Risk identification:
 - Assumption in traditional techniques:
 - linear relation
 - uniformly valid result
 - Reality of defect distribution:
 - isolated pocket
 - different types of metrics
 - correlation/dependency in metrics
 - qualitative differences

- Risk characterization:
 - Identified, then what?
 - Result interpretation.
 - Remedial/corrective actions.
 - Extrapolation to new product/release.

- TBDMs (tree-based defect models) for both risk identification and characterization.
TBDMs: Technique

- TBDMs: tree-based defect models.

- Technique: tree-based modeling
 - Tree: nodes=data-set, edges=decision.
 - Data attributes:
 - 1 response & n predictor variables.
 - Construction: recursive partitioning.
 - Usage: relating response to predictors
 - $Y = Tree(X_1, \ldots, X_n)$
 - understanding vs. predicting
 - identification and characterization
 - Works for mixed-types of data.
 - Tree growing and pruning.

- Many unique advantages:
TBDM Results

- IBM and Nortel products:
 - DF: Defect fixes per module
 - IBM-LS: a legacy system
 - IBM-NS: a new system
 - Nortel Networks: NT-X
 - All large software systems

- Results for IBM LS and NS:
 - LS: change, size, data complexity
 - NS: design and control complexity
 - Problem-prone modules identified

- Comparison: NT-X similar to IBM LS
 - Common traits of legacy systems
 - Implications: similar initiatives
Software Reliability Engineering

- Reliability: \(\text{Prob(failure-free operations)} \)
 - *Time domain*: for a specific period.
 - Reliability growth models.
 - *Input domain*: for a specific input set.
 - Repeated sampling models.
 - Statistical testing based customer operational profiles (OP)

- A new integrated approach:
 - Tree-based reliability models (TBRMs).
 - Both input/time domain information.
 - Risk focusing and remedial actions.
 - Main info. source: (Tian 1998)
Existing Reliability Models

- Modeling reliability-fault relations through statistical techniques/models

- Time domain approach
 - SRGMs: S/w reliability growth models.
 - Reliability growth over time due to testing and defect removal.
 - Time-between-failure (TBF) SRGMs
 - r.v.: failure interval
 - Period-failure-count (PFC) SRGMs
 - r.v.: failure count for given interval

- Input domain approach
 - IDRMs: Input domain rel. models.
 - Reliability input (sub-)domain relations.
Existing Techniques: SRGMs

- Common assumptions:
 - Failure arrivals: stochastic process.
 - Environment: operational profiles.
 - Randomized testing.
 - Equivalence of time.
 - Homogeneous distribution of faults.

- Model output and usage:
 - Assessment: MTBF and failure rate.
 - Prediction: future reliability.
 - Control: exit criteria.

- Experience: use activity-based measurement
Input Domain Reliability Analysis

- A typical IDRMs: Nelson model
 - Running for a sample of \(n \) inputs.
 - Randomly selected from set \(E \):
 \[
 E = \{ E_i : i = 1, 2, \ldots, N \}
 \]
 - Sampling probability vector:
 \[
 \{ P_i : i = 1, 2, \ldots, N \}
 \]
 - \(\{ P_i \} \): Operational profile.
 - Number of failures: \(n_e \).
 - Estimated reliability:
 \[
 R = 1 - \frac{n_e}{n}
 \]

- Use of IDRMs:
 - Repeated sampling without fixing.
 - Restrict to specific input states \(\Rightarrow \) possibility for risk identification
An Assessment of Approaches

- Time domain reliability analysis:
 - Customer perspective.
 - Overall assessment and prediction.
 - Ability to track reliability change.
 - Issues: assumption validity.
 - Problem: How to improve reliability?

- Input domain reliability analysis:
 - Explicit operational profile.
 - Better input state definition.
 - Hard to handle change/evolution.
 - Issues: sampling and practicality.
 - Problem: Realistic reliability assessment?
An Integrated Approach

- Combine strengths of the two ⇒ tree-based rel. models (TBRMs)

- Using TBRM for individual modeling:
 - Input state: categorical information.
 - Each run as a data point.
 - Time cutoff for partitions.
 - Data sensitive partitioning
 ⇒ Nelson models for subsets.

- Integrated reliability analyses:
 - TBRM: partitioned subset reliability.
 - Use both input and timing information.
 - Monitoring changes in trees.
 - Enhanced exit criteria.
 - SRGM: overall reliability near exit.
 - Integrate into the testing process.
Using TBRMs

- **Interpretation of trees:**
 - Predicted response: success rate.
 - (Nelson reliability estimate.)
 - Time predictor: reliability change.
 - State predictor: risk identification.

- **Monitoring reliability change:**
 - Change in predicted response.
 - Through tree structural change.

- **Risk identification and remedies:**
 - Identify high risk input state.
 - Additional analysis.
 - Enhanced test cases.
 - Remedies for components.
TBRMs: Cross Validation

- Consistency with macro models:
 ⇒ Effects on cost, schedule, quality.

- Validate with reliability growth models:
 ▶ Trend of reliability growth.
 ▶ Stability of failure arrivals.
 ▶ Estimated reliability.
 ▶ Product purity level at exit:
 - 90% with TBRMs vs. other 30~70%.

- Process changes & improvements:
 ▶ Failure detection and fault removal.
 ▶ Long term effect on development.

- Ultimate test: in-field problems.
Generalized Technique: TBQMs

- Measurements and TBMs
 - Metrics selection
 - Direct application of TBRMs in testing
 - Generalized TBQMs
 (tree-based quality models)

- TBQMs using all information:
 - Defects from testing/inspection/etc.
 - Inspection/testing details
 - Analyzer for design/code/etc.
 - System monitoring devices
Technique: Component Data

- Component data in early phases

- Root approach:
 - Each component/action as a data point
 - Refined granularity
 - Direct measurement and analysis
 - Issue: mapping to reliability

- Usage approach:
 - Usage sensitive measurement results
 - More front end computation
 - Product/customer view of quality
 - Issue: usage-component mapping
Lifecycle Connections

- Analysis technique
 - Binary to general TBMs
 - Other analysis techniques
 - Use existing partial results
 - e.g. from Nortel/EMERALD

- Followup actions
 - TBQM-guided causal analysis
 - Preventive measures

- Other quality assurance activities
 - TBQMs as overall guide
 - TBQMs as info. consumer/producer
Tools

- Data capturing tools:
 - Logs: pre-existing
 - Analyzers: existing metrics tools and new special purpose analyzers

- Analysis tools:
 - S-PLUS
 - Extended programs based on S-PLUS
 - Utility programs

- Presentation/report generation:
 - S-PLUS
 - Other GUI tools
Summary and Perspectives

- Availability vs. needs
 - Need reliability measurement/improvement
 - Previously available:
 - software reliability engineering
 - software measurement & analysis
 - Available through this research:
 - integrated approach
 - effective and wide applicability
 - techniques/tools (partially) developed
 - deployment and validation

- Future work:
 - Deployment and technology transfer
 - Technique/tool refinement in response to practical problems