Software Safety Tutorial
(Status Update)

Jeff Tian, tian@engr.smu.edu
CSE, SMU, Dallas, TX 75275

Topics

• Project Overview

• Software Safety Overview

• Project Tasks/Schedule/Progress
What Is Software Safety?

- **Software safety**: The property of being accident-free for (embedded) software systems.
 - Accident: failures with severe consequences
 - Hazard: condition for accident
 - Specialized techniques

- **Software safety engineering (SSE)**:
 - Goal: to ensure software safety via
 - hazard identification/analysis techniques
 - hazard resolution alternatives
 - hazard elimination/reduction/control
 - (tracking/mitigation/control – NASA)
 - safety and risk assessment
 - safety and process improvement

- Qualitative focus, systematic approach
Project Overview

- Sponsor: Dennis Frailey (David Struble), Raytheon.

- Motivation:
 - DoD commitment to safety (personnel/system/property/environment)
 - DoD goal: 0 mishaps (accidents above)

- Goal: Software safety should become a core competency for real-time software engineers.

- Project team:
 - Jeff Tian (SMU): Basics of SSE
 - D.T. Huynh and Eric Wong (UTD): related research and extensions

Jeff Tian
August 31, 2007
Overall Approach

• Basics about software safety (Tian):
 ▶ Basic definitions and concepts
 ▶ Hazard identification/analysis techniques, primarily fault-/event-tree analyses
 ▶ Design for safety via hazard elimination/reduction/control
 ▶ Leveson’s SSP (software safety program) and STAMP (sys. theoretic accident modeling and processes)
 ▶ Formal verification of safety
 ▶ New applications and development

• Tailoring to meet project sponsor goals:
 ▶ Include DoD MIL-STD-882D (Tian)
 ▶ Testing for safety (Wong)
 ▶ Formal methods for safety (Huynh)
Comparison: Lutz/NASA

• Software safety: 7 directions:
 1. integration of informal/formal methods
 2. safe reuse
 3. testing/evaluation of SCS
 4. runtime monitoring
 5. education
 6. certification and standards
 7. collaboration with related fields

• Coverage in our SST:
 ▶ 1/3/5: existing research/course
 ▶ 6: focus on DoD MIL-STD-882D
 ▶ 2/4/7: existing expertise
Basic Definitions

- Accident or mishap:
 - unplanned (series of) events
 - leading to unacceptable loss
 - death, injury, illness
 - equip./property/environment damage
 - excess energy/dangerous substance
 - computers relatively safe
 - but computer control ⇒ accidents

- Hazard:
 - a set of conditions leading to accidents under certain environmental conditions
 - e.g.: guard gates at rail-crossing
 - safety focus: control factors (vs. env. factors beyond control)
 - analysis and resolution ⇒ SSE
Basic Definitions

• Risk: function of 3 elements
 ▶ likelihood(hazard)
 ▶ likelihood(hazard ⇒ accident)
 ▶ worst possible loss due to accident
 (compare to expected loss)

• (System) safety engineering:
 ▶ ensuring acceptable risk
 ▶ scientific/management/engineering
 ▶ reducing risk factors
 ▶ context for software safety
 ▶ hazard identification, assessment, analysis, and resolution
Safety Analysis & Resolution

- Hazard analysis:
 - Fault trees: (static) logical conditions
 - Event trees: dynamic sequences
 - Combined and other analyses
 - Generally qualitative
 - Related: accident analysis and risk assessment

- Hazard resolution (pre-accident)
 - Negate/block/mitigate/etc.
 - Hazard elimination/reduction/control

- Damage reduction (post-accident)
Hazard Analysis: FTA

- Fault tree idea:
 - Top event (accident)
 - Intermediate events/conditions
 - Basic or primary events/conditions
 - Logical connections
 - Form a tree structure

- Elements of a fault tree:
 - Nodes: conditions and sub-conditions
 - terminal vs. no terminal
 - Logical relations among sub-conditions
 - AND, OR, NOT
 - Other types/extensions possible
Hazard Analysis: FTA Example

- Example FTA for an automobile accident
Hazard Analysis: FTA

- FTA construction:
 - Starts with top event/accident
 - Decomposition of events or conditions
 - Stop when further development not required or not possible (atomic)
 - Focus on controllable events/elements

- Using FTA:
 - Hazard identification
 - *logical* composition
 - *(vs. *temporal* composition in ETA)*
 - Hazard resolution (more later)
 - component replacement etc.
 - focused safety verification
 - negate logical relation
Hazard Analysis: ETA

- ETA: Why?
 - FTA: focus on static analysis
 - (static) logical conditions
 - Dynamic aspect of accidents
 - Timing and temporal relations
 - Real-time control systems

- Search space/strategy concerns:
 - Contrast ETA with FTA:
 - FTA: backward search
 - ETA: forward search
 - May yield different path/info.
 - ETA provide additional info.
Hazard Analysis: ETA Example

- Example ETA for an automobile accident

- Compare/contrast with FTA a few slides back.
Hazard Analysis: ETA

- Event trees:
 - Temporal/cause-effect diagram
 - (Primary) event and consequences
 - Stages and (simple) propagation
 - not exact time interval
 - logical stages and decisions

- Event tree analysis (ETA):
 - Recreate accident sequence/scenario
 - Critical path analysis
 - Used in hazard resolution (more later)
 - esp. in hazard reduction/control
 - e.g. creating barriers
 - isolation and containment
Design for Safety

- **Eliminate** identified hazard sources in material/component/software/etc.

- **Reduce** hazard likelihood/severity via:
 - Creating hazard barriers,
 - Minimizing failure probability, etc.

- **Control** hazard (after detection) via:
 - Isolation and containment,
 - Fail-safe design, etc.

- **Reduce** damage (post-accident, as compared to pre-accident for the above)
Hazard Elimination

- Hazard sources identification \Rightarrow elimination
 (Some specific faults prevented or removed.)

- Traditional QA (but with hazard focus):

 \triangleright Fault prevention activities:
 - education/process/technology/etc
 - formal specification & verification

 \triangleright Fault removal activities:
 - rigorous testing/inspection/analyses

- “Safe” design: More specialized techniques:

 \triangleright Substitution, simplification, decoupling.
 \triangleright Human error elimination.
 \triangleright Hazardous material/conditions\downarrow.
Hazard Reduction

- Hazard identification \Rightarrow reduction
 (Some specific system failures prevented or tolerated.)

- Traditional QA (but with hazard focus):
 - Fault tolerance
 - Other redundancy

- “Safe” design: More specialized techniques:
 - Creating hazard barriers
 - Safety margins and safety constraints
 - Locking devices
 - Reducing hazard likelihood
 - Minimizing failure probability
 - Mostly “passive” or “reactive”
Hazard Control

- Hazard detection \Rightarrow control
 - Key: failure severity reduction.
 - Post-failure actions.
 - Failure-accident link weakened.
 - Traditional QA: not much, but good design principles may help.

- “Safe” design: More specialized techniques:
 - Isolation and containment
 - Fail-safe design & hazard scope
 - Protection system
 - More “active” than “passive”
 - Similar techniques to hazard reduction, but focus on post-failure severity vs. pre-failure hazard likelihood.
Accident Analysis & Damage Control

- Accident analysis:
 - Accident scenario recreation/analysis
 - possible accidents and damage areas
 - Generally simpler than hazard analysis
 - Based on good domain knowledge
 (not much software specifics involved)

- Damage reduction or damage control
 - Post-accident vs. pre-accident hazard resolution
 - Accident severity reduced
 - Escape route
 - Safe abandonment of material/product/etc.
 - Device for limiting damages
Software Safety Program (SSP)

- Leveson’s approach (Leveson, 1995)
 — Software safety program (SSP)

- Process and technology integration
 - Limited goals
 - Formal verification/inspection based
 - But restricted to safety risks
 - Based on hazard analyses results
 - Safety analysis and hazard resolution
 - Safety verification:
 - few things carried over

- In overall development process:
 - Safety as part of the requirement
 - Safety constraints at different levels/phases
 - Verification/refinement activities
 - Distribution over the whole process
Tasks/Schedule/Progress

- Major tasks:
 1. state-of-the-art survey
 2. literature/research survey
 3. tutorial
 4. annotated bibliography

- Schedule (6 months in summary table):
 ▶ 3 months: interim review
 ▶ 6/9/12 months: draft/semi-/final tutorial

- Progress to date:
 ▶ Basis/extensions for all tasks identified
 ▶ Personnel/responsibility specified
 ▶ draft in 3 months

Jeff Tian
August 31, 2007