An Evaluation of Digital Image Correlation Criteria for Strain Mapping Applications

W. Tong

Department of Mechanical Engineering, Yale University, New Haven, CT 06520-8284, USA

ABSTRACT: The performance of four digital image correlation criteria widely used in strain mapping applications has been critically examined using three sets of digital images with various whole-field deformation characteristics. The deformed images in these image sets are digitally modified to simulate the less-than-ideal image acquisition conditions in an actual experiment, such as variable brightness, contrast, uneven local lighting and blurring. The relative robustness, computational cost and reliability of each criterion are assessed for precision strain mapping applications. Recommendations are given for selecting a proper image correlation criterion to efficiently extract reliable deformation data from a given set of digital images.

KEY WORDS: digital image correlation, image processing, in-plane strain measurement

NOTATION

В	The entire region of a sample surface common in both refer-	S and s	An image subset of the reference and current images respectively
	ence and current images	t_0	The time when the reference
C, C_{CC}, C_{SSD}	and sum-squared difference image correlation coefficients	$t = t_0 + \Delta t$	The time when the current image $g(\mathbf{x}, t_0)$ is taken
C ₁ , C ₂ , C ₃ , C ₄	Four specific sum-squared dif-		increment Δt
	ference (SSD) image correlation coefficients	$\mathbf{u} = [u_1, u_2]$	The 2-D displacement vector (and its horizontal and vertical
E or E_{11} , E_{22} , E_{12}	The 2-D Lagrangian strain ten-		displacement components)
F	sor and its three components	u _p (X ; P)	The local displacement field of
$G(\mathbf{X}, t_0)$	The brightness or greyscale value of each pixel of the reference		deformation mapping parame- ters P
	image	$w(ilde{G}, ilde{g})$	The pixel-level weight function
$g(\mathbf{x}, t)$	The brightness or greyscale value of each pixel of the current image		defined in terms of both refer- ence and current images
Ν	The total number of valid pixels in an image subset <i>S</i>	$\mathbf{X} = [X_1, X_2]$	2-D Cartesian coordinates of a material point on the reference
P or $P_1, P_2,, P_6, P_7$	A set of parameters that define a		image $G(\mathbf{X}, t_0)$
	possible local deformation mapping function for an image	X ₀	The centre or anchoring point of an image subset <i>S</i>
	subset S (usually centred at X_0)	$\mathbf{x} = [x_1, x_2]$	2-D Cartesian coordinates of a
P* or $P_1^*, P_2^*, \dots, P_6^*, P_7^*$	The parameters that define the optimised local deformation mapping function of an image subset <i>S</i>		material point on the current image $g(\mathbf{x}, t)$.

Introduction

Various correlation criteria have been used in the literature for strain mapping measurements based on digital images [1–17]. Assessment of each criterion is often made individually based on the digital images

acquired from nearly ideal test conditions and free from major image degradation. In an actual experimental environment, digital images are sometimes acquired with significant exposure and/or lighting variations over the loading history. Overexposure or underexposure, unstable or non-uniform lighting, uneven contrast, and blurring due to sample surface deformation and motion are among the most commonly encountered situations. There is a need to formulate a robust image correlation criterion and related image processing strategy for these images so the resulting strain mapping errors can be minimised or even eliminated.

This paper presents a study on the robustness, computational cost, and reliability of commonly used image correlation criteria by comparing their strain mapping results of three sets of numerically modified digital images with various degrees of average brightness, contrast and sharpness. In the following, a brief summary of the image correlation criteria evaluated in this study is first given. The procedure for selecting and generating the test image sets used in the study is then described. The strain mapping results obtained from correlation analyses of the test image sets using the various correlation criteria are presented. Finally, these results are discussed in terms of the strain mapping errors and the relative performance versus cost of these image correlation criteria.

Criteria for Digital Image Correlation-Based Strain Mapping

For strain mapping and pattern recognition applications based on digital image correlation, several criteria for matching image pairs have been reported in the literature [1-21]. They will be summarised in the following using the notations adapted by Tong and Li [11] and Li [12]. Consider an object with a flat surface *B* that lies on X_1 – X_2 plane in the *initial* or *undeformed* configuration defined by the two-dimensional Cartesian coordinates (X_1, X_2) at a certain starting time t_0 . The object is assumed to undergo only planar rigid-body motion and deformation so the surface Bremains flat and stays on X_1 – X_2 plane. Let a material point $\mathbf{X} = [X_1, X_2]$ on the flat surface of the object displace to the location $\mathbf{x} = [x_1, x_2]$ at the time t = $t_0 + \Delta t$. The deformation equations in the Lagrangian formulation are defined as:

$$\mathbf{x} = \mathbf{x}(\mathbf{X}, t) = \mathbf{X} + \mathbf{u}(\mathbf{X}, t), \quad t \ge t_0, \tag{1}$$

where $\mathbf{u} = [u_1, u_2]$ is the displacement vector in the X_1 - X_2 plane. The deformation gradient tensor **F** of an infinitesimal material vector at **X** is given as:

$$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \mathbf{I} + \frac{\partial \mathbf{u}}{\partial \mathbf{X}}, \quad \mathbf{X} \in B \text{ and } t \ge t_0.$$
(2)

The deformation gradient tensor F is used extensively in formulations of elasticity and plasticity

deformation theories of materials. For example, the Lagrangian strain tensor E is computed via $E = (F^TF - I)/2$.

During an experiment, the object surface *B* at the times t_0 and t are recorded respectively as reference and current images. In principle, the one-to-one correspondence between the physical and image coordinates of the object has to be established via a camera/lens calibration procedure. For simplicity, it is assumed that such a correspondence is identity so the spatial coordinates of the object in terms of pixels of digital images will be used in the remainder of the paper. Let $G(\mathbf{X}, t_0)$ and $g(\mathbf{x}, t)$ represent the brightness distribution functions of these two images in the initial (reference) and deformed (current) configurations respectively. The principle of image correlation for deformation measurement is to find a local displacement mapping **u** that can match the two intensity distribution functions over a small but finite area S in the initial configuration (S is called a subset of B here) or over the corresponding area s in the current configuration. The displacement mapping **u** over S is often parameterised by a vector P:

$$\mathbf{u}(\mathbf{X}, t) = \mathbf{u}_{p}(\mathbf{X}; \mathbf{P}), \quad \mathbf{P} = \mathbf{P}(\mathbf{X}_{0}, t) = [P_{1}, P_{2}, P_{3}, \ldots],$$
(3)

where X_0 is a reference material point usually centred within the subset *S*. The quality of matching between the two images over the subset region for an assumed parameter set **P** can be measured by a correlation coefficient:

$$C(\mathbf{X}, t; \mathbf{P}) = C\{G(\mathbf{X}, t_0), g(\mathbf{X} + \mathbf{u}_p, t)\}, \mathbf{X} \in S,$$
 (4)

where both the specific correlation criterion and the assumed displacement vector field $\mathbf{u}_{p}(\mathbf{X}; \mathbf{P})$ are defined over the subset *S*. Both cross-correlation (CC) criteria and sum-squared difference (SSD) correlation criteria have been proposed in the numerical and image analysis literature [18–21]. Consequently, the problem of deformation mapping by image correlation at an arbitrary point X_0 located within the subset *S* can be stated as to find a set of local mapping parameters $\mathbf{P}^* = [P_1^*, P_2^*, P_3^*,...]$ that maximises a CC coefficient or minimises an SSD correlation coefficient:

$$C(\mathbf{P}^*) = \max_{\mathbf{P}\in\mathbf{P}_{\mathbf{D}}} \{C_{\mathrm{CC}}(\mathbf{P})\}$$

or

$$C(\mathbf{P}^*) = \min_{\mathbf{P} \in \mathbf{P}_{\mathbf{D}}} \{ C_{\text{SSD}}(\mathbf{P}) \},\tag{5}$$

where $\mathbf{P}_{\rm D}$ contains all rational parameter sets of an assumed 2-D in-plane mapping function [e.g. def(**F**) > 0 is usually required]. To limit the scope of this study, only a homogenous deformation or affine mapping function will be considered, i.e. $\mathbf{P} = [P_1, P_2, P_3, P_4, P_5, P_6]$, with P_1 and P_2 as the two displacement components and P_2 - P_6 as the four displacement gradient components. As CC coefficients are actually related to the SSD correlation coefficients [18–24], only the latter ones will be evaluated in this study. A generic SSD correlation coefficient can be defined as:

$$C_{\rm SSD} = \int_{S} w \Big(\tilde{G}, \ \tilde{g} \Big) \Big[\tilde{g}(\mathbf{x}, \ t) - \tilde{G}(\mathbf{X}, \ t_0) \Big]^2 \mathrm{d}S, \tag{6}$$

where $\hat{G}(\mathbf{X}, t_0)$ and $\tilde{g}(\mathbf{x}, t)$ are certain normalised forms of brightness distribution functions of the image pair $G(\mathbf{X}, t_0)$ and $g(\mathbf{x}, t)$ respectively, and $w(\tilde{G}, \tilde{g})$ is a pixel-level weight function. Four commonly used SSD criteria are summarised in the following [assuming $w(\tilde{G}, \tilde{g}) = 1$ and the total number of pixels within the subset is N]:

$$C_1 = \sum_{i=1}^{N} \frac{(g_i - G_i)^2}{\bar{G}^2} = 1 + \frac{\bar{g}^2}{\bar{G}^2} - \frac{2\sum_{i=1}^{N} g_i G_i}{\bar{G}^2},$$
 (7a)

$$C_{2} = \sum_{i=1}^{N} \frac{(g_{i} + P_{7} - G_{i})^{2}}{\bar{G}^{2}} = 1 + \frac{(\bar{g} + P_{7})^{2}}{\bar{G}^{2}} - \frac{2\sum_{i=1}^{N} (g_{i} + P_{7})G_{i}}{\bar{G}^{2}}, \quad (7b)$$

$$C_3 = \sum_{i=1}^N \left(\frac{g_i}{\bar{g}} - \frac{G_i}{\bar{G}}\right)^2 = 2\left(1 - \frac{\sum_{i=1}^N g_i G_i}{\bar{g}\bar{G}}\right),\tag{7c}$$

$$C_{4} = \sum_{i=1}^{N} \left(\frac{g_{i} - g_{0}}{\Delta g} - \frac{G_{i} - G_{0}}{\Delta G} \right)^{2}$$

= $2 \left[1 - \frac{\sum_{i=1}^{N} (g_{i} - g_{0})(G_{i} - G_{0})}{\Delta g \Delta G} \right],$ (7d)

where P_7 is an extra parameter accounting for variation of the local average brightness of the subset between the two images [8], and

$$\bar{g} = \sqrt{\sum_{i=1}^{N} g_i^2}, \ g_0 = \sum_{i=1}^{N} \frac{g_i}{N}, \ \Delta g = \sqrt{\sum_{i=1}^{N} (g_i - g_0)^2},$$
 (8a)

$$\bar{G} = \sqrt{\sum_{i=1}^{N} G_i^2}, \ G_0 = \sum_{i=1}^{N} \frac{G_i}{N}, \ \Delta G = \sqrt{\sum_{i=1}^{N} (G_i - G_0)^2}.$$
(8b)

As shown above, the CC coefficients are indeed related to the SSD coefficients (with additional assumptions of $\bar{g} = \bar{G}$ and $\bar{g} + P_7 = \bar{G}$ for C_1 and C_2 respectively). In this study, the minimisation problem of the SSD correlation coefficients with respect to either 6 or 7 local mapping parameters P was solved by the nonlinear Newton-Raphson method for leastsquares regression [18]. Bicubic spline interpolation of the current image was used to compute the firstorder spatial derivatives of the image brightness and subsequently to obtain the Jacobian (gradient) and approximate Hessian matrices for each correlation coefficient [8, 12]. The convergence conditions in the Newton-Raphson iterative routine were set to ensure that variations in displacements P_1 and P_2 were equal to or less than 10⁻⁴ pixel and variations in displacement gradients P_2 - P_6 were equal to or less than 0.5×10^{-6} (i.e. 0.5 µstrains). A subset of 41×41 pixels and grids with 10×10 pixels were used in all analyses reported in the following.

The Test Image Sets

Three sets of test images $(640 \times 480 \text{ pixels}, 8\text{-bit})$ greyscale) were used to evaluate the performance of various SSD correlation criteria. To simulate the different lighting conditions, the original images are modified using a commercial digital image-processing program (Paint Shop Pro, Eden Prairie, MN, USA). The first set of test images consists of a still digital image of an aluminium plate (about 25 mm wide) as shown in Figure 1A and its eight variations due to changes in lightning conditions, including 20% increase in brightness, 30% decrease in contrast, equalised histogram, blurring (Gaussian filtering), etc. The still digital images are used to assess the level of possible minimum errors introduced by the variable lighting conditions for small-strain mapping applications. The image pairs in the second set of test images are selected from a uniaxial tensile test of a compact dog bone-shaped steel sheet sample (Figure 1B). The width of the tensile sample is about 4.6 mm. The image of the deformed steel sheet sample is modified digitally to account for seven different lighting conditions. The second set of test images is used to evaluate the effects of variable lighting conditions on the local strains in a moderately and nominally homogenously deformed field. Finally, a pair of digital images from a tensile test of a tapered titanium sheet sample [14] is used as the basis for the third set of test images. The original width of the sample is about 4 mm and the image resolution is 9.7 microns per pixel (Figure 1C). The image of the deformed

Figure 1: The reference images used in the current evaluation: (A) a stationary aluminum plate; (B) a steel sheet sample under uniaxial tension; (C) a tapered titanium sheet sample under uniaxial tension. The sample surfaces were decorated with spray black paint speckles to enhance the image contrast for image correlation processing

titanium sample is again modified digitally to account for seven different lighting conditions. The third set of images is used to evaluate the effects of variable lighting conditions on the overall strain distributions in a non-homogenous deformation field. The strain level is also much higher than that in the second image set. For a complete list of the digitally modified test images, see tables given in Appendix A.

Evaluation Results

The still image set

The eight image pairs (TST0 versus TST1-8) were evaluated according to the four SSD correlation criteria discussed above. Image correlation analysis results of the still image set are given in Tables 1–3 in terms of robustness, speed and reliability respectively. Table 1 shows the pass/fail results of digital image correlation calculations (here 'fail' means that the maximum iteration step of 80 was reached

Table 1: Summary of the robustness and speed (unit: minutes) for the first image set

'Lighting' conditions	C	<i>C</i> ₂	<i>C</i> ₃	C ₄
+20% intensity (I)	1.5	1.1	3.2	2.6
-30% contrast (C)	2.5	2.4	3.5	2.8
-30% C and blurred	Fail*	Fail*	Fail*	6.1
Equalised histogram	2.5	2.3	2.0	4.1
Equalised and blurred	1.8	1.7	2.0	5.2
+20% I and -30% C	3.3	2.4	Fail*	2.9
+20% I, -30% C and blurred	Fail*	Fail*	Fail*	5.3
+20% I, -30% C and both	1.9	1.8	Fail*	4.9

*Convergence conditions could not be reached at the end of 80 iteration steps.

Table 2: Global overall strains measured for the first image set (the unit for maximum global strain is micro-strains, i.e. 10^{-6})

'Lighting' conditions	Cı	<i>C</i> ₂	C ₃	C ₄
+20% intensity (I)	81	<	6.5	<
-30% contrast (C)	17	7.1	7.3	1.1
-30% C and blurred	-	-	-	3–6
Equalised histogram	90	15	5	1.9
Equalised and blurred	104	13	4.5	3.6
+20% I and -30% C	87	8.7	-	<
+20% I, -30% C and blurred	-	-	-	3–6
+20% I, -30% C and both	93	29	-	10-16

Table 3: Local strain mapping results	for the first image set
(the unit for the average and standard	deviation in strains is
micro-strains, i.e. 10^{-6})	

'Lighting' conditions	CI	C ₂	<i>C</i> ₃	C ₄
+20% intensity (I)	488 ± 2140	<1 ± 3	22 ± 172	< ± 3
-30% contrast (C)	70 ± 403	± 44	22 ± 181	<1 ± 8
-30% C and blurred	-	-	-	32 ± 147
Equalised histogram	375 ± 1485	49 ± 329	34 ± 161	3 ± 40
Equalised and blurred	582 ± 1801	85 ± 402	27 ± 166	23 ± 158
+20% I and -30% C	405 ± 1875	13 ± 142	-	<1 ± 9
+20% I, -30% C and blurred	-	-	-	37 ± 149
+20% I, -30% C and both	667 ± 2386	157 ± 812	-	96 ± 743

without meeting the convergence conditions in the nonlinear Newton-Raphson solution procedure described above). The correlation criterion C_4 was most robust as no failure to converge was encountered while the criteria C_1 and C_2 were the second best (failed to process only two cases when both the image contrast was reduced and the image blurring was introduced). The correlation criterion C_3 was the least robust for this set of images (half of the eight image pairs failed to meet the convergence conditions). The total computational times that took to complete the successful image correlation calculations on a Pentium desktop computer are listed in Table 1 as well. The criteria C_1 and C_2 were among the fastest ones while the correlation criterion C_4 was the most computationally intensive (about half or less the speed of the fast ones on average).

The reliability and accuracy of the strain mapping results by digital image correlation were assessed in terms of both the global overall strain levels and the local strain variations (the average and the standard deviation of local strains). Tables 2 and 3 list the maximum values among the three in-plane strain components E_{11} , E_{22} and E_{12} . Clearly, the criterion C_4 gave the most reliable and accurate results (i.e. closest to zero strains) for all cases compared. Uniform changes in intensity and/or contrast as well as equalisation in histogram induced little errors in both global and local strains using this criterion. Blurring of images induced about 30 µstrains and 150 µstrains in the average and standard deviation values of local strain levels. Little global strains (3-6 μ strains at most) were detected. However, significant errors in local strains existed for the images with nonuniform lighting changes (the last case in which three different regions in the image were modified separately (see Appendix A for details). As expected, the criterion C_2 was as accurate as the criterion C_4 in dealing with uniform shift in the image brightness. They were far less accurate in processing images undergoing a contrast shift or image blurring. Surprisingly, it also gave poor results for images with the histograms equalised. However, the criterion C_3 gave better results than the criterion C_2 for the histogramequalised images (they are less robust though). For all the cases that could be processed successfully using the criterion C_1 , the results were the worst in terms of both global and local strains.

The homogenous deformation image set

The robustness and speed performance of the four correlation criteria are summarised in Table 4 for the second test image set. Both criteria C_2 and C_4 were

Table 4: Summary of the robustness and speed (unit: minutes)

 for the second image set

'Lighting' conditions	Cı	<i>C</i> ₂	C ₃	C4
The original deformed image	3.1	3.1	3.4	11.5
+20% brightness	Fail*	3.1	6.5	11.5
-30% contrast and softened	7.0	6.7	8.6	10.8
Equalised histogram	Fail*	9.3	7.8	14.4
Equalised and blurred	Fail*	7.7	6.4	4.
+20% I and -30% C (softened)	Fail*	6.7	Fail*	10.8
Gamma correction (0.65)	Fail*	3.4	5.6	13.0
Gamma correction (1.50)	Fail*	3.4	6.3	12.0

*Convergence conditions could not be reached at the end of 80 iteration steps.

equally robust in successfully processing all of eight pairs of images while the criterion C_2 was about three times faster than the criterion C_4 . Using the original image pair, the three in-plane global strain components $(E_{11}, E_{22} \text{ and } E_{12})$ over the entire region of the strain maps have been computed as 0.04224 ± 0.000628 , -0.02235 ± 0.000339 and 0.000431 ± 0.000331 respectively. For all the cases that could be processed successfully, little difference was detected in the global overall strains. In many strain-mapping applications, details in the local strain distributions are of interest [5, 7, 12, 16]. The results obtained from using the original image pair based on the criterion C_4 may be used as the reference strain maps while all other results are treated as test strain maps. The differences between the test strain mapping results and the reference ones can then be computed. The standard deviations of the local pointto-point difference in three in-plane strain components can then be used as a measure of strain mapping errors (Table 5). The numbers in the brackets in Table 5 are the point-to-point CC coefficients [18] between the reference and test strain maps.

As expected, the criterion C_4 gave the best results for each case in terms of reliability. A simple shift in the image brightness or contrast induced little error using the criterion C_4 . A softened image would have a local strain error of <100 µstrains. Gamma corrections could cause the errors up to about 100–200 μ strains or so. Equalised histogram and blurring would add the errors up to about 250–500 μ strains and gave the smallest CC coefficient (much less than 0.9). The strain mapping results using the original pair of images and other three criteria show little errors (indicating the high quality of the original images; see case no.1 in Table 5). Again, the criterion C_2 was very effective in processing images with the simple shift in image brightness and somewhat effective with images subjected to gamma corrections. It was ineffective with images undergoing contrast changes, softening/blurring, and histogram equalisation. The criterion C_1 was least reliable as the

'Lighting' conditions	Cı	<i>C</i> ₂	<i>C</i> ₃	C ₄
Original deformed image	23 (0.93)	32 (1.00)	13 (1.00)	Reference maps
	19 (0.88)	35 (0.99)	35 (0.99)	
	10 (0.95)	(1.00)	7 (1.00)	
+20% brightness	-	32 (1.00)	1054 (0.67)	<1 (1.000)
		35 (0.99)	1187 (0.54)	<1 (1.000)
		(1.00)	368 (0.59)	<1 (1.000)
-30% contrast and	1628 (0.57)	989 (0.64)	1184 (0.64)	85 (0.99)
softened	1687 (0.44)	1191 (0.56)	1357 (0.53)	85 (0.97)
	689 (0.42)	344 (0.59)	409 (0.55)	42 (0.99)
Equalised histogram	-	3846 (0.01)	3616 (-0.13)	266 (0.93)
		3934 (-0.28)	3138 (-0.14)	256 (0.73)
		1188 (0.36)	1492 (0.16)	140 (0.90)
Equalised and blurred	-	4833 (0.02)	4165 (-0.13)	513 (0.80)
		4663 (-0.32)	3752 (-0.16)	429 (0.50)
		1448 (0.34)	1745 (0.16)	236 (0.81)
+20% I and -30% C	-	982 (0.65)	_	91 (0.99)
(then softened)		1186 (0.56)		85 (0.97)
		339 (0.60)		47 (0.99)
Gamma correction (0.65)	-	251 (0.92)	1628 (0.03)	214 (0.94)
		244 (0.88)	1633 (-0.05)	149 (0.94)
		143 (0.91)	648 (0.49)	116 (0.94)
Gamma correction (1.50)	_	378 (0.90)	1209 (0.65)	139 (0.98)
		333 (0.80)	1256 (0.52)	102 (0.95)
		129 (0.92)	429 (0.54)	75 (0.97)

Table 5: Standard deviations of local strain differences dE_{11} , dE_{22} , dE_{12} between test and reference strain maps for the second image set (the unit for local strain differences is micro-strains, i.e. 10^{-6} and the number in a bracket is the cross-correlation coefficients between the strain maps)

CC coefficients between the test and reference strain maps for cases other than no.1 were all far less than 0.9.

The non-homogenous deformation image set

The original image pair in this image set was selected from the load steps nos. 22 and 38 of a consecutive image set that was analysed in an experimental study on diffuse necking in sheet metals [14]. As shown in Figure 2, axial strain distributions along the centre-

Figure 2: Axial strain distribution profiles at selected load steps for the tapered titanium sheet sample under uniaxial tension [14]. The numbers overlaid the curves are load steps when a digital image was taken during the test. The image pairs used here (TIPO and TIP1) correspond to the one at load steps nos. 22 and 38 respectively

line of the tapered tensile sheet sample have been found to be highly non-homogenous with increasing load steps. The robustness and speed performance of the four correlation criteria are summarised in Table 6 for the third test image set. The three inplane global true strain components (E_{11} , E_{22} and E_{12}) over the entire region of the strain maps have been computed using the original image pair and the criterion C_4 to be 0.2438 ± 0.06049, -0.1197 ± 0.03212 and 0.001950 ± 0.007358 respectively. Large standard deviations in strains are related to the highly non-homogenous deformation field itself (Figure 3). The correlation criterion C_4 was the most robust in successfully processing all eight pairs of images while the criterion C_2 was the second best (failed to process

Table 6: Summary of the robustness and speed (unit: minutes)for the third image set

'Lighting' conditions	Cı	<i>C</i> ₂	<i>C</i> ₃	C ₄
The original deformed image	10.1	10.2	11.2	27.5
+20% brightness	Fail*	9.8	9.8	32.6
+20% brightness and blurred	12.9	12.2	Fail*	22.3
Equalised histogram	Fail*	10.9	16.1	35.7
Equalised and blurred	Fail*	Fail*	Fail*	29.9
-30% contrast	9.2	9.3	9.5	27.7
-30% contrast and blurred	Fail*	Fail*	Fail*	20.7
+20% I and -30% C	10.9	10.6	Fail*	32.6

*Convergence conditions could not be reached at the end of 80 iteration steps.

Figure 3: The axial true strain distribution of the tapered titanium sample between the original image pair of TIP0 and TIP1 (criterion C_4)

only two of the total eight cases). The criterion C_1 was the worst as it could only process four cases of them. Again, the criterion C_2 was about three times faster than the criterion C_4 . For all the cases that could be processed successfully, little difference in the global strains were detected as well.

Similarly, the results obtained from the criterion C_4 and the original image pair may be used as the refer-

ence strain maps while all other results are regarded as test strain maps. The standard deviations of the local point-to-point difference between the test strain mapping results and the reference ones are shown in Table 7 for all three in-plane strain components. The numbers in the brackets in Table 7 are the CC coefficients between the reference and test strain maps. Another way of assessing the reliability of the strain mapping results is to use the normalised errors in local strains. The normalised local strain errors are computed by dividing the local strain difference (between the reference and the test maps) by the local strains of the reference maps. As an example shown in Figure 4 for the case no. 5 using the criterion C_4 , the normalised error in the transverse strain component is at most a few per cent and is about only 0.1% at the centre of the tapered tensile sample. The criterion C_2 gave the local strain mapping reliability similar to that of the criterion C_4 , except the case no. 6. The criterion C_1 had the worst reliability for this set of test images, especially for cases nos. 3 and 8.

Discussions

Maintaining steady and uniform lighting and exposure conditions during image acquisition in a mechanical test is critical in achieving the best strain

'Lighting' conditions	Cı	<i>C</i> ₂	<i>C</i> ₃	C ₄
The original deformed image	972 (1.00)	272 (1.00)	500 (1.00)	Reference maps
	539 (1.00)	139 (1.00)	285 (1.00)	
	403 (1.00)	70 (1.00)	232 (1.00)	
+20% brightness	_	2109 (1.00)	3882 (1.00)	2280 (1.00)
		1062 (1.00)	1852 (1.00)	1158 (1.00)
		790 (0.99)	1575 (0.98)	751 (1.00)
+20% brightness and blurred	16880 (0.96)	2310 (1.00)	_	2530 (1.00)
	8940 (0.96)	1392 (1.00)		1481 (1.00)
	6249 (0.80)	959 (0.99)		867 (0.99)
Equalised histogram	_	3795 (1.00)	6192 (1.00)	3684 (1.00)
		1906 (1.00)	3087 (1.00)	1821 (1.00)
		1309 (0.98)	2382 (0.95)	1077 (0.99)
Equalised and blurred	_	_	_	4396 (1.00)
				2322 (1.00)
				1321 (0.98)
-30% contrast	1523 (1.00)	1517 (1.00)	1312 (1.00)	12 (1.00)
	986 (1.00)	838 (1.00)	771 (1.00)	8 (1.00)
	599 (1.00)	440 (1.00)	647 (1.00)	8 (1.00)
-30% contrast and blurred	-	-	-	314 (1.00)
				557 (1.00)
				215 (1.00)
+20% I and -30% C	10664 (0.98)	1993 (1.00)	-	2231 (1.00)
	5220 (0.99)	1192 (1.00)		1135 (1.00)
	3930 (0.90)	985 (0.99)		737 (1.00)

Table 7: Standard deviations of local strain differences dE_{11} , dE_{22} , dE_{12} between test and reference strain maps for the third image set (the unit for local strain differences is micro-strains, i.e. 10^{-6} and the number in a bracket is the cross-correlation coefficients between the strain maps)

Figure 4: The normalised errors in transverse true strain distribution of the tapered titanium sample (case no. 5 listed in Table A3, criterion C_4)

mapping results by digital image correlation. When such conditions cannot be fully realised in an actual experiment due to either the limitation of the imaging hardware (especially the scanning electron and atomic force microscopes) or the surface degradation of deforming objects, the effect of variable lightings and exposures on the performance of digital image correlation-based strain mapping should be assessed and the most robust and reliable image processing strategy may be developed to minimise the measurement errors.

In all the successfully processed cases for the three sets of test images investigated here, the global average strain levels differ at most by 50–100 μ strains. If such a level of errors is acceptable for a given application, then the variable lightning and exposure conditions simulated in this study is of little concern. The selection of the correlation criteria can be based on either the robustness (the criterion C_4) or the computational cost (the criterion C_2). However, when one is concerned with relatively small deformations of the order of a few hundreds micro-strains (≈ 0.01 –0.1%) in either the overall average levels (the first test image set) or detailed local strain variations (the second test image set), the most robust and reliable correlation criterion C_4 should always be used. Unless the image pair to be processed is of highest quality, the strain mapping results obtained by other correlation criteria are always less reliable. Measurements of deformation fields with large overall strains and high strain gradients tend to be far less sensitive to the kinds of degradation of images considered here, although only the criterion C_4 is successful in processing all cases. The local measurements of the strain component E_{12} (about 2700 μ strains) in the third test image set become nevertheless unreliable.

Surprisingly, both criteria C_1 and C_3 have been used widely in a significant number of strain mapping applications [1-4, 6, 13, 16, 17]. While they may be adequate for pattern matching [20, 21] in general and whole-field strain mapping using images of very high quality, the results in this study have shown that both criteria are far less robust and reliable than either criterion C_2 or C_4 . The correlation criterion C_2 was originally introduced in the context of processing 3-D surface profiling data acquired by scanning probe microscopy [8] and it has been used for many in-plane strain mapping applications [5, 7, 9, 11, 12, 14, 15]. The extra parameter P_7 effectively acts as a correction term on the average brightness of the image pair. While it is not as robust and reliable as the correlation C_4 , its reduced computational cost makes it attractive for many practical applications. This study shows that the normalised correlation criterion C_4 is most robust and reliable for processing images with variable lightning or exposure problems considered here. Its only drawback is the threefold increase in the computational cost when compared with the criterion C_2 .

Conclusions

Based on the numerical evaluations of three sets of test images presented here, the performance of the four correlation criteria considered in this study can be summarised as following:

- Robustness ranking: C₄, C₂, C₃ and C₁;
- Reliability ranking: *C*₄, *C*₂, *C*₃ and *C*₁;
- Speed ranking: C_1 , C_2 , C_3 and C_4 .

To achieve the most reliable results in strain mapping applications, the most robust correlation criterion C_4 should always be used. If only the average deformation levels of a deformed image are required or when images of good stability and minimal degradation can be assured, the fast correlation criterion C_2 may be used to reduce the computational cost. Other two correlation criteria evaluated here are not recommended at all for whole-field strain mapping measurements except for very high quality images.

REFERENCES

- 1. Sutton, M. A., McNeill, S. R., Jang, J. and Babai, M. (1988) Effect of subpixel image restoration on digital correlation error estimates. *Opt. Eng.* **27**, 870–877.
- Bruck, H. A., McNeill, S. R., Sutton, M. A. and Peters, W. H. (1989) Digital image correlation using Newton-Raphson method of partial differential corrections. *Exp. Mech.* 29, 261–267.

- 3. James, M. R., Morris, W. L. and Cox, B. N. (1990) A high accuracy automated strain-field mapper. *Exp. Mech.* **30**, 60–67.
- 4. Franke, E. A., Wenzel, D. J. and Davison, D. L. (1991) Measurement of microdisplacements by machine vision photogrammetry. *Rev. Sci. Instrum.* 62, 1270–1279.
- 5. Tong, W. (1997) Detection of plastic deformation patterns in a binary aluminum alloy. *Exp. Mech.* **37**, 452–459.
- Choi, S. and Shah, S. P. (1997) Measurement of deformation on concrete subjected to compression using image correlation. *Exp. Mech.* 37, 307–313.
- 7. Tong, W. (1998) Strain characterization of propagative deformation bands. *J. Mech. Phys. Solids* **46**, 2087–2102.
- 8. Vendroux, G. and Knauss, W. G. (1998) Submicron deformation field measurements, Part 2. Improved digital image correlation. *Exp. Mech.* **38**, 86–91.
- Smith, B. W., Li, X. and Tong, W. (1998) Error assessment for strain mapping by digital image correlation. *Exp. Tech.* 22, 19–21.
- Zhang, D., Zhang, X. and Cheng, G. (1999) Compression strain measurement by digital speckle correlation. *Exp. Mech.* 30, 62–65.
- 11. Tong, W. and Li, X. (1999) Evaluation of two plastic strain mapping methods. *Proc. SEM Annual Conference on Theoretical, Experimental and Computational Mechanics,* Cincinnati, Ohio, 23–26.
- 12. Li, X. (2000) Spatial characterization of unstable plastic flows in two aluminum alloys. PhD Thesis, Department of Mechanical Engineering, Yale University, New Haven, CT.
- 13. Schreier, H. W., Braasch, J. R. and Sutton, M. A. (2000) Systematic errors in digital image correlation caused by intensity interpolation. *Opt. Eng.* **39**, 2915–2921.
- 14. Tong, W. and Zhang, N. (2001) An experimental investigation of necking in thin sheets. *Proc. ASME Manufacturing Engineering Division MED*, New York, Vol. 12.
- Raiser, G. F., Emery, R. D. and Tong, W. (2002) Digital image correlation – using deformation measurements to accelerate microprocessor product development. *Proc. SPIE – The International Society for Optical Engineering*, Vol. 4217, 485–490.
- Wang, H. and Kang, Y. (2002) Improved digital speckle correlation method and its application in fracture analysis. *Opt. Eng.* 41, 2793–2798.
- 17. Yoneyama, S. and Morimoto, Y. (2003) Accurate displacement measurement by correlation of colored random patterns. *JSME Int.* A46, 178–184.
- Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T. (1986) *Numerical Recipes: the Art of Scientific Computing*. Cambridge University Press, Cambridge, UK: 484–485, 509–528.
- Gonzalez, R. and Wintz, P. (1987) Digital Image Processing, 2nd edn. Addison Wesley, New York: 90–92, 100–109, 425–427.
- 20. Jain, R., Kasturi, R. and Schunck, B. G. (1995) *Machine Vision*. McGraw-Hill, New York: 482–483.
- 21. Ritter, G. X. and Wilson, J. N. (1996) Handbook of Computer Vision Algorithms in Image Algebra. CRC Press, Boca Raton, FL: 225–229.

- 22. Tong, W. and Zhang, N. (2004) On the crack initiation and growth in a strongly dynamic strain aging aluminum alloy sheet. *J. Mater. Sci. Technol.* **20** (Suppl. 1), 23–26.
- 23. Tong, W. (2004) An adaptive backward image correlation technique for deformation mapping of a growing crack in thin sheets. *Exp. Tech.* **28**, 63–67.
- 24. Tong, W. (2004) Plastic strain mapping of bent sheets by image correlation. *Exp. Mech.* 44, 502–511.

APPENDIX A: SUMMARY OF TEST IMAGE SETS

Table AI: The still image set

Image file	Comments
TST0.RAW	The reference image (of an aluminium plate)
TSTI.RAW	Brightness increased 20% from TST0
TST2.RAW	Contrast reduced 30% from TST0
TST3.RAW	Blurred TST2
TST4.RAW	Histogram-equalised TST0
TST5.RAW	Blurred TST4
TST6.RAW	Brightness: +20% and contrast: -30% (TST0)
TST7.RAW	Blurred TST6
TST8.RAW	Strip 1: brightness: +20% and contrast: -30%
	Strip 2: only brightness increased 20%
	Strip 3: only contrast reduced 30% (TST0)

All digital image modifications mentioned above (and below) are carried out using the functions in the program Paint Shop Pro.

Table A2: The homogenous deformation image set

Image file	Comments
STL0.RAW	The reference image (of a steel sample)
STLI.RAW	The deformed image (of the steel sample)
STL2.RAW	Brightness increased 20% from STLI
STL3.RAW	Contrast reduced 30% from STL1 (softened)
STL4.RAW	Histogram equalised (STL1)
STL5.RAW	Blurred STL1
STL6.RAW	Brightness: +20% and contrast: -30% from the image STLI and then softened once
STL7.RAW	0.65 gamma correction on STLI (darker)
STL8.RAW	1.50 gamma correction on STL1 (brighter)

 Table A3:
 The non-homogenous deformation image set

Image file	Comments
TIP0.RAW	The reference image (of a titanium sample)
TIPI.RAW	The deformed image (of the titanium sample)
TIP2.RAW	Brightness increased 20% from TIPI
TIP3.RAW	Blurred TIP2
TIP4.RAW	Histogram equalised (TIP1)
TIP5.RAW	Blurred TIP4
TIP6.RAW	Contrast reduced 30% from TIP1
TIP7.RAW	Blurred TIP6
TIP8.RAW	Brightness: +20% and contrast: -30% from the image TIPI