
Project Report of CSE 8351 Computer Arithmetic

Error Estimation of High Precision Reciprocal of Decimal Numbers Obtained from a Prescaled LUT

Zizhen Chen

Advisor: Professor Matula

SMU ID: 37366827

Email: dragonz@live.cn

1. Project Purpose
We investigate the utilization of additive prescaling for reducing the input range for determining
a higher precision lookup table (LUT) value employing moderate table size. This method is
specifically used on application of division.
This report is for the project of estimating errors between high precision reciprocal of decimal
numbers obtained from a prescaled LUT and its real value.
I use C++ Language to build a program via Visual Studio 2010 Compiler on Windows 7 platform
to accomplish this project.

2. Estimation sum results via calculus
The format of the 9,000,000 numbers is formulated below.

𝑦 = 𝑑0.𝑑1𝑑2𝑑3𝑑4𝑑5𝑑6 (1 ≤ 𝑑0 ≤ 9).
So the range is from 1 to 9.999999.
Because we want to calculate sum of the reciprocals of such 9,000,000 numbers, we can use
definite integral method to estimate the value of sum like below.

𝑆𝑢𝑚 = �
1
𝑦

9.999999

1

𝑆𝑖𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑜𝑓 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
1
𝑦

 𝑓𝑟𝑜𝑚 1 𝑡𝑜 9.999999,𝑤𝑒 𝑐𝑎𝑛 𝑔𝑒𝑡

�
1
𝑦
𝑑𝑦 = lim

∆𝑦→0
�

1
𝑦𝑖

9.999999

𝑖=1

×∆𝑦
9.999999

1
= �

1
𝑦𝑖

9.999999

𝑖=1

× ∆𝑦 + 𝑜(𝑦)

𝐻𝑒𝑟𝑒, 𝑜(𝑦) 𝑖𝑠 𝐻𝑖𝑔ℎ𝑒𝑟 𝑂𝑟𝑑𝑒𝑟 𝐼𝑛𝑓𝑛𝑖𝑡𝑒𝑠𝑖𝑚𝑎𝑙 𝑜𝑓 𝑦, 𝑠𝑜 𝑜(𝑦)𝑖𝑠 𝑎 𝑟𝑒𝑎𝑙𝑙𝑦 𝑡𝑖𝑛𝑦 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑖𝑐ℎ 𝑤𝑒 𝑐𝑎𝑛 𝑜𝑚𝑖𝑡.

𝑇ℎ𝑒𝑛, �
1
𝑦𝑖

9.999999

𝑖=1

× ∆𝑦 + 𝑜(𝑦) ≈ �
1
𝑦𝑖

9.999999

𝑖=1

× ∆𝑦

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒,𝑤𝑒 𝑐𝑎𝑛 𝑔𝑒𝑡

�
1
𝑦

9.999999

1
𝑑𝑦 ≈ �

1
𝑦𝑖

9.999999

𝑖=1

× ∆𝑦

𝑆𝑖𝑛𝑐𝑒�
1
𝑦

9.999999

1
𝑑𝑦

= ln(9.999999) − 𝑙𝑛1 = ln (9.999999) ≈ 2.302584993,

�
1
𝑦𝑖

9.999999

𝑖=1

× ∆𝑦 ≈ 2.302584993

𝐻𝑒𝑟𝑒,∆𝑦 = 0.0000001 (𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑤𝑜 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑦𝑖)

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑆𝑢𝑚 = �
1
𝑦𝑖

9.999999

𝑖=1

≈
2.302584993

∆𝑦
=

2.302584993
0.0000001

= 2302584.993

In conclusion, the sum of reciprocals of such 9 million numbers is estimated as 2302584.993.

3. Project Process with Specification of Programming code
The whole program is going to compute 9,000,000 decimal 32-bit format normalized values. The
format of the 9,000,000 numbers is formulated below.

𝑦 = 𝑑0.𝑑1𝑑2𝑑3𝑑4𝑑5𝑑6 (1 ≤ 𝑑0 ≤ 9).
Related code of comparing these 9,000,000 decimal numbers:

struct
{

 unsigned index;
double
oriNum,revOriNum,resFactor,renNum,row,numHat,numHat5,c,revNumHatA,revNumA,r
evNumB,error;

}store[9000000];

Specification:
Here I applied 9,000,000 units of memory space to store a struct which includes index and all
kinds of computing factor of each number. Below is the detail specification of variables in the
struct.
index: Index of 9,000,000 numbers.
oriNum: Original value of the number. (𝑦)

revOriNum: Reciprocal value of the original number. (1
𝑦

)

resFactor: Rescale Factor. (𝑟)
renNum: Renormalized value of the original number. (𝑦′ = 𝑦 × 𝑟)
row: Prescale Factor. (𝜌)
numHat: This stores the prescaled value of the renormalized number. (𝑦^ = 𝑦′ × 𝜌)
numHat5: This is the truncated value of 𝑦^ with accuracy of 5 decimal digits. (𝑦5^ is truncated
value, not rounded one of 𝑦^.)

c: A constant value which is defined by the formula: 𝑐 = 1
𝑦5^
− (2 − 𝑦5^). (In real use, the value of

c is got from a look up table)
revNumHatA: This stores the value of reciprocal prescaled renormalized number.

(1
𝑦𝑎^

= 2−𝑦5
^ + 𝑐)

revNumA: This stores the postscaled value of revNumHatA above. (1
𝑦𝑎

= 𝜌× 1
𝑦𝑎^

)
revNumB: Renormalize back the revNumA above, then store the value in this

variable. (1
𝑦𝑏

= 𝑟× 1
𝑦𝑎

) <‘r’ is the rescale factor>

error: This stores the final error results between
1
𝑦
 and

1
𝑦𝑏
. (| 1

𝑦
− 1

𝑦𝑏
|)

Then let’s begin the addressing process.
Step One: Renormalize numbers to range [0.8 ≪ 𝑦 ≪ 1.28]
Renormalize the original decimal numbers to range [0.8 ≪ 𝑦 ≪ 1.28]
according to the table below.
Interval Rescale Factor Renormalized Range
[1, 1.6) 0.8 [0.8, 1.28)
[1.6, 2) 0.5 [0.8, 1.0)
[2, 3.2) 0.4 [0.8, 1.28)
[3.2, 4) 0.25 [0.8, 1.0)
[4, 6.4) 0.2 [0.8, 1.28)
[6.4, 10) 0.125 [0.8, 1.25)

(And we should remember to renormalize back at the end of the process.)
The according programming code is listed below.

 if(store[index].oriNum<1.6)
 store[index].resFactor=0.8;
 else if(store[index].oriNum<2)
 store[index].resFactor=0.5;
 else if(store[index].oriNum<3.2)
 store[index].resFactor=0.4;
 else if(store[index].oriNum<4)
 store[index].resFactor=0.25;
 else if(store[index].oriNum<6.4)
 store[index].resFactor=0.2;
 else
 store[index].resFactor=0.125;

 store[index].renNum=store[index].oriNum*store[index].resFactor;

Specification:
Make a judgement of what range the original number is located, then
find the rescale factor according to the table showed above. This is
implemented by ‘if…else’ statements in the programming code above.
Finally, multiply the rescale factor and the original number to get the
renormalized number.

Step Two: Determine prescaled values of renormalized numbers (𝑦^ = 𝑦′ ×
𝜌)
First, calculate the according prescale factor of each renormalized
number.

Since the range of renormalized numbers is [0.8 ≪ 𝑦 ≪ 1.28], we equally
divided the range into 48 parts. Each part has an interval of 0.01.
Each according prescale factor is the reciprocal value of the midpoint
of each interval (The value has accuracy of two decimal digits). For
example, if the renormalized number locates in the range of interval
[0.80, 0.81), then the prescale factor can be determine like this:

𝜌 = 1
0.805

≈ 1.24 (𝑡𝑤𝑜 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑑𝑖𝑔𝑖𝑡𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦).
Therefore, the related programming code calculating the prescale factor
is listed below.

 store[index].row=floor(10000/(floor(100*store[index].renNum)+0.5)+0.5)/100;

Specification:
The ‘floor’ function in C++ programming language is used to truncate
decimal numbers into its integer part like ‘floor(1.977)=1’.
Second, compute the prescaled values of renormalized numbers (𝑦^ = 𝑦′ ×
𝜌). Since we already got the prescale factor, it is easy to calculate
and the according code is listed below.

 store[index].numHat=store[index].row*store[index].renNum;

Step Three: Find c for 1000 values as follows from table.

𝑐 = 1
𝑦5^
− (2 − 𝑦5^) (𝑦5^ is truncated value of 𝑦^ with accuracy of 5 decimal digits)

The according programming code is listed below.

 store[index].numHat5=floor(store[index].numHat*100000)/100000;
 store[index].c=1/store[index].numHat5-(2-store[index].numHat5);

Step Four: Let 1
𝑦𝑎^

= 2 − 𝑦5^ + 𝑐

The 1
𝑦𝑎^
 is just the prescaled value of reciprocal decimal numbers

obtained from LUT. The according programming code is listed below.

 store[index].revNumHatA=(2-store[index].numHat5)+store[index].c;

Step Five: Postscale
Since the former values we calculated up to now is prescaled (𝑦^ = 𝑦′ ×

𝜌), we should postscale it (𝑦𝑎 = 𝑦𝑎^

𝜌
). Then 1

𝑦𝑎
= 1

𝑦𝑎
^

𝜌

= 𝜌 × 1
𝑦𝑎

^ , so we only

need to multiply prescale factor 𝜌 to 1
𝑦𝑎^
, the according

programming code is listed below.

 store[index].revNumA=store[index].row*store[index].revNumHatA;

Step Six: Renormalize back the reciprocal value.
Just like step five, since we have renormalized original numbers y to
range [0.8 ≪ 𝑦 ≪ 1.28] (𝑦′ = 𝑦 × 𝑟), we should renormalize it back to
original value range (𝑦𝑏 = 𝑦𝑎

𝑟
). Then 1

𝑦𝑏
= 1

𝑦𝑎
𝑟

= 1
𝑦𝑎

× 𝑟, so we only need to

multiply rescale factor r to 1
𝑦𝑎
, the according programming code is

listed below.

store[index].revNumB=store[index].revNumA*store[index].resFactor;

Step Seven: Compute Errors
This step is just to do the final thing which is the main purpose of
the project, computer errors between the real value of reciprocal
decimal numbers and the high precision value of reciprocal decimal

numbers obtained from LUT. 𝐸𝑟𝑟𝑜𝑟 = �1
𝑦
− 1

𝑦𝑏
�. The according programming

code is listed below.

 store[index].error=abs(store[index].revOriNum-store[index].revNumB);

Step Eight: Compute Sum error area
This step is to add up all the reciprocal of original numbers and add
up all the approximated reciprocal of original numbers, then calculate
the difference of these two sums. The related code is listed below:

for(unsigned i=0;i<9000000;i++)
 {
 oriSum+=store[i].revOriNum;
 aprSum+=store[i].revNumB;
 }
 cout<<"Sum of Original Reciprocal Numbers: "<<oriSum<<endl;
 cout<<"Sum of Approximated Reciprocal Numbers: "<<aprSum<<endl;
 cout<<"Difference betweent Sums: "<<abs(oriSum-
aprSum)<<endl;

4. Other specification of the project program

a. I stores all the results into csv files. CSV stands for Comma-
separated values, so CSV file is the file stores Comma-separated
values which means it consists of any number of records, separated
by line breaks of some kind; each record consists of fields,
separated by some other character or string, most commonly a literal
comma or tab. Usually, all records have an identical sequence of
fields.
CSV is a common, relatively simple file format that is widely
supported by consumer, business, and scientific applications and it
is the main reason I chose this format to store results. CSV file

can easily open via Microsoft Excel and each field in CSV file
occupies one column in Excel.

b. Since the program is used to compute errors of 9,000,000 numbers,
the volume of the results is really huge.
At first, I tried to store all the results into one single file and
the file has 925 Megabytes storage!
Below is the screenshot of this single file.

However, there is a problem with Microsoft Excel, that is Excel only
can show 1,048,576 rows of the file (this is the maximum rows Excel
can show). Since we have 9,000,000 numbers to calculate which means
the file has 9,000,000 rows stored in and if I opened the single
file anyway, I will get such pop-up tip.

Therefore, finally, I decided to store the whole results in 9
separate CSV files. That’s why in the programming code, it has a
loop which will run 9 iterations. The code is listed below.

 for(unsigned i=1;i<=9;i++)

And the 9 results files is showed below.

c. Functions of Program
There are three main functions of this project program:
1) Start Running

This start calculating the 9,000,000 numbers and when it’s done,
there will be 9 CSV files appeared at the same place where the
program locates.

2) Open CSV File
This will open one of the 9 CSV result files according to your
choice. It will open the CSV file via the default software which
can deal with CSV Files on Windows platform. On Windows platforms

with Microsoft Office installed, the default software dealing
with CSV files is Microsoft Excel.

3) Select Record
This is a function which can search a single number out of the
9,000,000 ones to view the whole record of each related factors
of that number in my program itself. (For more details, please
see the running screenshots in section d of part 4).

5. Screenshots of program running
a. Program Menu

b. Start Running and Running Complete

c. Open CSV Files

d. Select Record

e. Sum error Area

6. Attachments of Whole C++ Code of Project Program
(This code only can be fully compatible on Visual Studio C++ platform)

// Arithmetic.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"

using std::string;
using std::stringstream;
using std::cout;
using std::cin;

using std::endl;
using std::ofstream;
using std::setprecision;

unsigned choice;
struct
{
 unsigned index;
 double
oriNum,revOriNum,resFactor,renNum,row,numHat,numHat5,c,revNumHatA,revNumA,revNumB,error;
}store[9000000];

int _tmain(int argc, _TCHAR* argv[])
{
 void print1(),print2();
 unsigned index=0;
 string fileNamePart1="results",fileNamePart3=".csv",fileName;
 stringstream ss;
 ofstream output;
 double oriSum=0, aprSum=0;
 do
 {
 print1();
 switch(choice)
 {
 case 0:
 cout<<"Long time to wait..."<<endl;
 for(unsigned i=1;i<=9;i++)
 {
 output.close();
 output.clear();
 ss<<i;
 fileName=fileNamePart1+ss.str()+fileNamePart3;
 output.open(fileName);
 ss.str("");
 output<<"Index,Y,1/Y,Rescale Factor,Renormalized
Y,Row,y^,y^(5),C,1/(y^a),1/(Ya),1/(Yb),Errors"<<endl;
 for(unsigned j=0;j<=999999;j++)
 {
 store[index].index=index+1;
 store[index].oriNum=(i*1000000+j)/1000000.0;
 store[index].revOriNum=1/store[index].oriNum;
 if(store[index].oriNum<1.6)
 store[index].resFactor=0.8;
 else if(store[index].oriNum<2)
 store[index].resFactor=0.5;
 else if(store[index].oriNum<3.2)
 store[index].resFactor=0.4;
 else if(store[index].oriNum<4)
 store[index].resFactor=0.25;
 else if(store[index].oriNum<6.4)
 store[index].resFactor=0.2;
 else
 store[index].resFactor=0.125;

 store[index].renNum=store[index].oriNum*store[index].resFactor;

 store[index].row=floor(10000/(floor(100*store[index].renNum)+0.5)+0.5)/100;

 store[index].numHat=store[index].row*store[index].renNum;

 store[index].numHat5=floor(store[index].numHat*100000)/100000;
 store[index].c=1/store[index].numHat5-(2-
store[index].numHat5);
 store[index].revNumHatA=(2-
store[index].numHat5)+store[index].c;

 store[index].revNumA=store[index].row*store[index].revNumHatA;

 store[index].revNumB=store[index].revNumA*store[index].resFactor;
 store[index].error=abs(store[index].revOriNum-
store[index].revNumB);

 output<<setprecision(9)<<store[index].index<<','<<store[index].oriNum<<','

 <<store[index].revOriNum<<','<<store[index].resFactor<<','

 <<store[index].renNum<<','<<store[index].row<<','<<store[index].numHat

 <<','<<store[index].numHat5<<','<<store[index].c<<','<<store[index].revNumHatA

 <<','<<store[index].revNumA<<','<<store[index].revNumB<<','<<store[index].error<<e
ndl;
 index++;
 }
 }
 output.close();
 print2();
 break;
 case 1:
 cout<<"There are 9 files with results, please choose(1--9):";
 cin>>choice;
 ss<<choice;
 fileName=fileNamePart1+ss.str()+fileNamePart3;
 ShellExecute(NULL,"open",fileName.c_str(),NULL,NULL,SW_SHOWNORMAL);
 ss.str("");
 print2();
 break;
 case 2:
 double number;
 cout<<"Please input the number you want to search:";
 cin>>number;
 choice=number*1000000-1000000;
 cout<<"Index=";
 cout<<store[choice].index<<endl;
 cout<<"Y=";
 cout<<setprecision(9)<<store[choice].oriNum<<endl;
 cout<<"1/Y=";
 cout<<setprecision(9)<<store[choice].revOriNum<<endl;
 cout<<"Rescale Factor=";
 cout<<setprecision(9)<<store[choice].resFactor<<endl;
 cout<<"Renormalized Y=";
 cout<<setprecision(9)<<store[choice].renNum<<endl;
 cout<<"Row=";
 cout<<setprecision(9)<<store[choice].row<<endl;
 cout<<"y^=";

 cout<<setprecision(9)<<store[choice].numHat<<endl;
 cout<<"y^(5)=";
 cout<<setprecision(9)<<store[choice].numHat5<<endl;
 cout<<"C=";
 cout<<setprecision(9)<<store[choice].c<<endl;
 cout<<"1/(y^a)=";
 cout<<setprecision(9)<<store[choice].revNumHatA<<endl;
 cout<<"1/(Ya)=";
 cout<<setprecision(9)<<store[choice].revNumA<<endl;
 cout<<"1/(Yb)=";
 cout<<setprecision(9)<<store[choice].revNumB<<endl;
 cout<<"Errors=";
 cout<<setprecision(9)<<store[choice].error<<endl;
 print2();
 break;
 case 3:
 if(oriSum==0)
 for(unsigned i=0;i<9000000;i++)
 {
 oriSum+=store[i].revOriNum;
 aprSum+=store[i].revNumB;
 }
 cout<<setprecision(9)<<"Sum of Original Reciprocal Numbers:
"<<oriSum<<endl;
 cout<<setprecision(9)<<"Sum of Approximated Reciprocal Numbers:
"<<aprSum<<endl;
 cout<<setprecision(9)<<"Difference betweent Sums:
"<<abs(oriSum-aprSum)<<endl;
 print2();
 break;
 default:
 if(choice!=4)
 {
 cout<<"Wrong choice, press any key to go back menu...";
 cin.sync();
 getchar();
 }
 }
 }
 while(choice!=4);
 return 0;
}

void print1()
{
 system("cls");
 cout<<"===
=====";
 cout<<"___
_____";
 cout<<"||************** $$ Reciprocal $$ ****************
||";
 cout<<"||********** $$$$$$$$$$ Error Estimation $$$$$$$$$$ ***********
||";

cout<<"||__||";
 cout<<"||***************$$ $$ 0.Start Running $$
$$****************||";

 cout<<"||***************$$ $$ 1.Open CSV Files $$
$$****************||";
 cout<<"||***************$$ $$ 2.Select Record $$
$$****************||";
 cout<<"||***************$$ $$ 3.Sum Error Area $$
$$****************||";
 cout<<"||***************$$ $$ 4.Exit $$
$$****************||";

cout<<"||__||";
 cout<<" Please choose(0--4): ";
 cin>>choice;
 cout<<"---
-----";
}

void print2()
{
 cout<<"Mission complete! Press any key to go back menu...";
 cin.sync();
 getchar();
}

	1. Project Purpose
	2. Estimation sum results via calculus
	3. Project Process with Specification of Programming code
	4. Other specification of the project program
	5. Screenshots of program running
	6. Attachments of Whole C++ Code of Project Program

